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It should be distinctly understood that this
[quantum mechanics] cannot be a deduction in
the mathematical sense of the word, since the
equations to be obtained form themselves the
postulates of the theory. Although they are made
highly plausible by the following considerations,
their ultimate justification lies in the agreement
of their predictions with experiment.

—Werner Heisenberg



Dedication

Jahangir Ansari



Preface

The essays in this volume result from the Fall 2018 offering
of the course Control of Atmospheric Particulates (ENGG*4810) in
the Environmental Engineering Program, University of Guelph,
Canada. In this volume, students have written about Charles-
Augustin de Coulomb, Werner Heisenberg, Srinivasa Iyengar
Ramanujan, Muhammad ibn Musa Al-Khwarizmi, Leonhard
Euler, Adolf Eugen Fick, James Clerk Maxwell, Robert Hutch-
ings Goddard, Nikolai Albertovich Fuchs, and Josiah Willard
Gibbs. Students have accessed valuable literature to write about
these figures. I was pleased with their selections while compil-
ing the essays, and I hope the readers will feel the same too.

Amir A. Aliabadi
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1 Charles-Augustin de Coulomb
(1736-1806)

Beyond Electrostatics

By Zimeng Wan, Mamoon Syed, Yunxi Jin, Jamie
Stone, and Jacob Murphy

When we think of famous physicists many names typically
come to mind: Albert Einstein, Isaac Newton, Niels Bohr, Stephen
Hawking, and the list goes on. All of these scientists had in-
credibly successful careers generating groundbreaking research
that, in many cases, fundamentally changed how their field of
study was viewed. Because of their successes, many of these
scientists became household names forever associated with aca-
demic proficiency and the field of physics itself. Unfortunately
however, one such scientist, Charles-Augustin de Coulomb, is
much less of a household name. Despite this fact, the contribu-
tions that Coulomb made to the study of physics should not be
undervalued. Coulomb is most well known in modern day for
his work in the field of electrostatics but made other contribu-
tions to different areas of mechanics throughout his career.
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1 Charles-Augustin de Coulomb (1736-1806)

1.1 Early Years Against the Norm

Charles-Augustin de Coulomb was born in Angoulême, France,
on June 14, 1736 as the third child to parents Henri Coulomb
and Catherine Bajet (Dowson, 1978). Both of Henri and Cather-
ine were of a high societal standing, coming from wealthy fam-
ilies, and Henri was working as a legal professional with some
political connections. Soon after Charles-Augustin de Coulomb
was born, his family moved to Paris, France, due to his fa-
ther’s work. Catherine had high aspirations for her son, and
early on in his young-adult life she enrolled him in the Collège
Mazarin, one of the most highly regarded secondary schools in
Paris at the time. Despite the wealth and social standing of the
Coulomb family, they were not considered as aristocrats and
were therefore not privy to some of the social and economical
advantages provided at this time. This resulted in Charles-
Augustin being one of the school’s unofficial students, with
the institution not allowing him full admission. Even though
he was not considered a full student at the time, the Collège
Mazarin educated Coulomb in the fields of language (Falconer,
2004), literature, and philosophy. At some point later in his
education, Coulomb heard of an astronomer, Charles Pierre Le
Monnier, who was providing lectures at a different institution
known as the Collège Royal de France. Curious, Coulomb at-
tended many of Monnier’s lectures which furthered his interest
in the science as well as providing him with a strong back-
ground in Newtonian mechanics. This interest in the sciences
also resulted in Coulomb taking classes in mathematics, astron-
omy, chemistry, and botany back at Collège Mazarin. This de-
cision to pursue a more scientific education was disliked by
Coulomb’s mother, resulting in the two becoming somewhat
estranged (Falconer, 2004).
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1 Charles-Augustin de Coulomb (1736-1806)

Around the same time, Coulomb’s father had moved south
to Montpellier, France, because of some financial difficulties he
had in business dealings in Paris. Due to the disagreements
with his mother, Coulomb joined up with his father in Mont-
pellier in the year 1757 (Oliveira, 2016). While in Montpellier
Coulomb joined up with the Society of Sciences of Montpellier.
This allowed him to further his interests in the fields of both
mathematics and astronomy due to the many scientific papers
at the disposal of this Society. Later in the same year, Coulomb
decided that to continue his education he was going to have to
receive a formal education at a proper institution. This decision
lead him to move back to Paris in late 1758 in order to receive
tutoring to prepare him for the entrance examinations into the
École du Génie at Mézières.

By 1760 Coulomb was enrolled in the engineering program
of Mézières (Falconer, 2004), a military funded program at the
school. During his time in school, Coulomb continued his sci-
entific study, gaining both a fundamental theoretical under-
standing of mechanics as well as experiencing practical engi-
neering skills. This practical education included many building
projects in the local community. Coulomb successfully gradu-
ated as a trained engineer as well as earning the rank of lieu-
tenant in the Corps de Génie in the process in November 1761
(Oliveira, 2016). The formative years of Charles-Augustin de
Coulomb are very telling for his determination and resilience of
character as well as illustrating his love and connection to the
academic field, specifically to the pursuit of scientific knowl-
edge. His willingness to go against his family’s wishes and
pursue a scientific education and join a community dedicated
to learning showed his own dedication to his scientific passion
that would not be easily quelled. Additionally, his persistence
in pursuing enrolment into an education despite not hailing
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1 Charles-Augustin de Coulomb (1736-1806)

from a class that typically could participate in such an insti-
tution further shows his determination to be part of something
greater. The work performed and scientific discoveries achieved
by Coulomb are owed to his efforts at an early age.

1.2 The Military Engineer

Charles-Augustin de Coulomb began his professional career in
the field of military engineering. Over his years served in the
French military, Coulomb accumulated practical experience in
fortification, structural building design, and soil mechanics, just
to name a few. His first posting was to Brest, France, in the im-
mediate aftermath of his graduation in 1761 but was relatively
uneventful. This would all change for Coulomb in February
1764 (Falconer, 2004) when a fellow military engineer fell ill
at the posting of Martinique in the West-Indies. As a result,
Coulomb was transferred to Martinique. Martinique was un-
der the control of France at the time, however it was often the
target of attacks from both the English and the Dutch armies
as recently as 1762. The signing of the Treaty of Paris in 1763
ensured the control of Martinique to France, but the French
ruler at the time, Louis XV le Bien-Aimé (or the Beloved), insisted
that the island colony be fortified to defend against future at-
tacks should the treaty be broken. The task of completing this
fortification was handed to Coulomb upon his appointment to
Martinique in 1764 (Dowson, 1978). The time that Coulomb
spent constructing Fort Bourbon allowed him to apply his en-
gineering education in an impactful manner.

His work on Fort Bourbon also formed the basis of his sub-
sequent research in the field of applied mechanics. Coulomb
wrote memories at the time, documenting his work on Fort
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1 Charles-Augustin de Coulomb (1736-1806)

Bourbon, which would later go on to form the basis of the scien-
tific field of soil mechanics. From these memories, investigative
theories outlining mechanical friction, cohesion, and the flex-
ure of structural beams as well as the shear force capabilities
of different brittle materials have all been derived. This was
not however used at the time as few other engineers would use
Coulomb’s methods until later in the future. This was partly
do to the fact that much of Coulomb’s work was comprised of
mechanisms for ensuring the stability and longevity of a project
and did not define any laws, rules, or tables for use in this
field. The oversight of the project of fortifying the settlement
in Martinique took Coulomb until the June of 1772 (Dowson,
1978). The time that Coulomb spent in Martinique was not all
positive unfortunately. He was plagued by illness and other
health concerns during his time there, and even after his re-
turn to France, he was affected by these health concerns for the
rest of his life. On the lighter side, the knowledge gained from
Coulomb’s practical experience in Martinique would go on to
shape the rest of his career.

1.3 Mathematics, The Language for
Engineering

Upon returning to continental France, Coulomb moved to Bouchain
(Oliveira, 2016), a community in the north of the country. It was
there where he began some of his most defining research into
the field of applied mechanics. In 1773 he presented his first
findings on friction and cohesion to the Académie des Sciences
based on the writings he had done in his Martinique mem-
oirs. His application of mathematics and calculus being used
to solve his engineering problems with Fort Bourbon were sig-
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1 Charles-Augustin de Coulomb (1736-1806)

nificant at the time. Prior to Coulomb, the concept of applying
sophisticated mathematical principles to rudimentary manual
labor tasks was not common. This publication led to Coulomb
becoming a correspondent for the Académie des Sciences, al-
lowing him to provide news on his research to the academy di-
rectly. His first recognized honour from the Académie des Sci-
ences came in 1777 (Falconer, 2004) and was for his work on an
explanation for the magnetic nature of the earth as well as his
work with compasses. In 1779 Coulomb traveled to Rochefort
in order to work alongside fellow engineer Marquis de Mon-
talembert.

Like Coulomb, Montalembert had cultivated a reputation for
his engineering prowess while working with the military to
fortify settlements and colonies. In Rochefort, Coulomb per-
formed some of the most critical research of his career. He used
the laboratories and the shipyards in Rochefort to continue his
research in applied mechanics (Falconer, 2004). The most note-
worthy research he performed at the time was in the study of
friction, which led him to write his book Théorie des Machines
Simple which earned him even greater praise from Académie
des Sciences. He won an academy prize for his work on fric-
tion and in the process, essentially made friction a new field of
scientific study. As a result of his work, Coulomb was elected
to be a member of the Académie des Sciences in 1781 (Oliveira,
2016) and moved back to Paris in the process. With his new
membership status and the prize money he earned for his work,
Coulomb no longer had to work as a structural engineer, how-
ever he did remain as a consultant on choice for few projects.
This allowed Coulomb to focus the majority of his time and en-
ergy on his own research. It was during this time that Coulomb
began work on the field of electrostatics, the field in which he
is most well-known in modern day.
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1 Charles-Augustin de Coulomb (1736-1806)

1.4 The Beginning of Electrostatics

He submitted seven papers to the Académie des Sciences be-
tween the years of 1785 and 1791, all on the topic of electro-
statics (Falconer, 2004). These papers contained research that
would fundamentally change how electricity and magnetism
were viewed in the world of science. The papers outlined the
fact that bodies of the same polar electrical charge would re-
pulse one another and that bodies of opposite polar electrical
charge would be attracted to one another. This was the ba-
sis of the Theory of Attraction and Repulsion that is still used
to this day. In these papers Coulomb also demonstrated how
the Inverse Square Law can be directly applied to electrostatics
(Oliveira, 2016). He showed that the electrical field strength of a
body is a function of the charge from the point source, the area
of the spherical body and the radial distance from the source.
The electrical force illustrated by the Inverse Square Law be-
came known as Coulomb’s Law, which again, is still used in
electrical engineering and circuitry in modern times. The final
major finding illustrated in these scientific papers was his work
into conductors and dielectric insulators. Coulomb stated that
there is no substance that exists that acts as a perfect electrical
insulator. He stated that every dielectric material has a limit to
the amount of electricity that it can insulate from and when that
limit is reached, the dielectric will begin to conduct electricity.
This principle is still used today, with electronics manufactur-
ers having to take special care to ensure that their devices are
made of a substance that can handle a specific electrical charge
running through the device.
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1 Charles-Augustin de Coulomb (1736-1806)

1.5 Dedication to Community and Final
Years

Charles-Augustin de Coulomb was not just an important re-
search consultant to the Académie des Sciences, but he was
actively involved in his community. He was involved with
hundreds of committees during his twenty-five-year associa-
tion with the Académie des Sciences, providing feedback to and
having influence on many other French scientists and physicists
of the time. Coulomb also applied himself to the betterment of
public welfare. He worked alongside the governments of the
time to provide his inputs on both the medical and education
institutions. Coulomb also aided in maintaining and develop-
ing the water systems in Paris, which included work on the
Royal Fountains. Coulomb also had two sons with his eventual
wife Louise Françoise LeProust Desormeaux, one born in 1790
and the other in 1797 (Oliveira, 2016). In 1791 Coulomb retired
from the Corps du Génie and later in 1793 left the committee
of the Académie des Sciences. After his retirement and resigna-
tions, Coulomb and his family moved to a house he owned near
Blois, France. In his retirement, Coulomb continued his scien-
tific research; however he did not make any major scientific
advancements in this time. In 1796 Coulomb became afflicted
with a fever that was related back to the illness he sustained
while working at Martinique. Coulomb passed away in Paris
on August 23, 1806 (Oliveira, 2016).

1.6 Multifaceted Contributions

Charles-Augustin de Coulomb was an immensely important
scientist in the field of mechanics. The work done by Coulomb
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1 Charles-Augustin de Coulomb (1736-1806)

through his time in the French military as well as during his as-
sociation with the Académie des Sciences fundamentally changed
the landscape of science. He essentially created the fields of re-
search in both soil mechanics as well as mechanical friction,
fields not formerly recognized prior to his work. Addition-
ally, Coulomb’s theories and work in electrostatics are being
felt today with much of his research still being used by mod-
ern scientists. The work accomplished throughout the career of
Charles-Augustin de Coulomb cannot be understated.
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2 Werner Heisenberg
(1901-1976)

A Life of Uncertainty

By Greg Johnstone, Thomas Jackson, Michael Mac-
Gregor, and Ketan Suresh

Apple Inc.’s 1997 Think Different campaign began with a com-
mercial: “[Crazy people] push the human race forward, and
while some may see them as the crazy ones, we see genius, be-
cause the people who are crazy enough to think that they can
change the world, are the ones who do.” Werner Karl Heisen-
berg was an exemplar of this mindset to his very end. Within
this paper, the genius of Heisenberg will be showcased along
with his lesser known personal life: from his early years in Mu-
nich, Germany, to his immense contributions to many fields,
such as quantum mechanics, particle physics, and ferromag-
netism. With certainty or uncertainty, we delve into the life of
Werner Karl Heisenberg.

2.1 Early Life

Werner Karl Heisenberg was one of the greatest theoretical physi-
cists of the modern era. Before that he was a humble boy who
was born on the fifth of December 1901 to Kaspar Ernst August
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2 Werner Heisenberg (1901-1976)

Heisenberg and Annie (Wecklein) Heisenberg. Werner’s father
was a classical languages teacher at a secondary school, and
his mother Annie stayed at home with the children. Ultimately,
his father’s love for academic learning inspired Heisenberg to
pursue a career in science.

World War I (WWI) and its aftermath had a profound effect
on the young Heisenberg, as he witnessed the impact of the
War’s embargo and the upheaval of the monarchy on German
Society (Cassidy, 1992). This resulted in him being very active
in the German youth movements. He was a member and scout
leader of the Bund Deutscher Neupfadfinder, an organization
similar to the Boy Scouts of America.

Werner was an avid hiker, and a dedicated hard worker who
worked summers on a farm to help pay for his university tu-
ition. Heisenberg from a young age had many talents. Through-
out his life, music was very important to him; by the age of
thirteen he was able to play compositions meant for masters
(Chatterjee, 2004). Extremely intelligent he taught himself cal-
culus and attempted to have his own papers published as a
teenager.

He later studied mathematics and physics while attending
university at Ludwig-Maximilians-Universitat München and the
Georg-August-Universitat Göttingen from 1920 to 1923. While
attending university, he studied under Arnold Sommerfeld and
Wilhelm Wien in Munich, and he studied physics with James
Planck and Max Born at Göttingen.

In 1922, Arnold Sommerfeld took Heisenberg to the Bohr Fes-
tival where Niels Bohr was speaking because Sommerfeld knew
of Heisenberg’s exorbitant interest in Bohr’s theories on atomic
physics. Bohr gave numerous lectures on quantum physics at
the festival, which is where Heisenberg and Bohr met for the
first time. Bohr had an immeasurable effect on Werner through-
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2 Werner Heisenberg (1901-1976)

out his life.
In 1923, Heisenberg received his doctorate degree. His topic

of choice, turbulence, was suggested by Sommerfeld. The the-
sis focused on the nature of laminar and turbulent flows and
each state’s stability. The key investigative tool was the Orr-
Sommerfeld fourth order linear differential equation designed
to work with small disturbances from laminar flow.

2.2 Theoretical Physics

Heisenberg was referred to as a magician-physicist from modern-
day physicist Steven Weinberg (Satija, 2016). This title is in
reference to his research and his style of developing his the-
ories. Weinberg believes that Heisenberg’s approach to theoret-
ical physics “does not seem to be reasoning at all, but [Heisen-
berg] jumps all over intermediate steps to a new insight about
nature” (Satija, 2016). Heisenberg knew of and was privy to
his unorthodox methods as he wrote: “It should be distinctly
understood that this [quantum mechanics] cannot be a deduc-
tion in the mathematical sense of the word, since the equations
to be obtained form themselves the postulates of the theory.
Although they are made highly plausible by the following con-
siderations, their ultimate justification lies in the agreement of
their predictions with experiment” (Plotnitsky, 2016). Heisen-
berg’s methodology proved to be credible as they led to the
fundamental basis of quantum mechanics.

Upon his graduation from Munich, Heisenberg began lectur-
ing at the University of Göttingen. The position eventually led
to the opportunity to conduct theoretical physics research with
Neils Bohr at the University of Copenhagen. With the assis-
tance of Neils Bohr, Heisenberg extended the use of the Bohr
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2 Werner Heisenberg (1901-1976)

atom model into a new form of mechanics. The system inter-
prets the physical properties of atomic particles and expresses
them in a matrix. This research led to the first complete and
correct definition of quantum mechanics, known as matrix me-
chanics (Cassidy, 1992). Heisenberg’s famous 1927 uncertainty
principle was another breakthrough developed during his time
working with the University of Copenhagen, which disrupted
Newton’s clockwork universe.

Heisenberg published his uncertainty principle, that stated
particles do not follow straight forward Newtonian laws, where
the end conditions can be calculated given the starting condi-
tions. The motivation for Heisenberg’s new theory was said to
be derived from a conversation with Albert Einstein in 1926.
During this conversation Einstein questioned Heisenberg’s phi-
losophy on Nature. The conversation led to Einstein’s famous
quotation “Only the theory decides what one can observe” (Cas-
sidy, 1992). Heisenberg saw this as an attack on his funda-
mental basis in which he developed his theories. Heisenberg
later expanded on Einstein’s quote by explaining “While the
theory determines what can be observed, the uncertainty prin-
ciple showed him [Einstein] that a theory also determines what
cannot be observed” (Cassidy, 1992).

The uncertainty principle proclaims that a position x and a
momentum p cannot be measured with absolute certainty at
the same time. It is further explained by stating that obtaining
a more accurate measurement of position will decrease the ac-
curacy of momentum’s measurement and vice-versa. A macro-
scale example of this phenomenon would be measuring the
change in the path of a thrown basketball after it impacted a
thrown tennis ball. The change can tell us where the tennis ball
was at impact, but not much of its momentum. The uncertainty
principle is used for the explanation of numerous phenomena
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2 Werner Heisenberg (1901-1976)

in quantum physics. Alpha decay, for example, is a type of nu-
clear radiation that is caused by two neutrons and two protons
escaping the nucleus of another atom. The particles’ escape is
justified using the uncertainty principle by acknowledging that
the position of the particle is very precise and therefore the ve-
locity is very unknown, possibly large enough to escape.

2.3 Ferromagnetism

Heisenberg’s efforts with magnetism proved the applicability
of his theories in quantum mechanics. Heisenberg used his
knowledge in quantum mechanics to simplify Weiss’ theory on
molecular fields (Chikazumi, 2009; Mnyukh, 2012).

The phenomenon of magnetism has been known since 600
BCE by the Ancient Greeks, but it was not till the nineteenth
century that studies were undertaken (Chatterjee, 2004). In-
cluding and up to the 1920s physicists failed to understand
magnetic properties an atomic level of understanding (Chatter-
jee, 2004). Heisenberg’s theory on quantum mechanics helped
fill this void.

Before Heisenberg’s discovery, the phenomenon of ferromag-
netism escaped explanation. Ferromagnetism, the strongest
magnetic phenomenon, occurs when the poles of a magnet are
laid in a uniform direction. The Curie-Wiess Model could fully
explain many magnetic phenomena like paramagnetism, a mul-
tidirectional magnetism; but ferromagnetism escaped its defi-
nition (Chikazumi, 2009). The Curie-Wiess Model attempts to
explain ferromagnetism by asking to pretend there is a second
field to the external field. The assumption is that the imagi-
nary field, a Wiess Field, influences the direction of the mag-
net into ferromagnetic orientations (Chikazumi, 2009). Heisen-
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2 Werner Heisenberg (1901-1976)

berg was the first to connect the phenomena of electron bond-
ing and ferromagnetism, which proved to be the foundation of
the Weiss molecular field. It still had to justify ferromagnetism
in certain metals, but it gave meaning to the Wiess’ imaginary
field. It was also Heisenberg’s quantum dynamics that allowed
for the understanding of the atomic spectra in relation to fer-
romagnetism. Heisenberg’s work in ferromagnetism also ex-
panded into the world of Hamiltonian Mechanics, which at-
tempts to describe classical mechanics using phase states and
time. Heisenberg’s Hamiltonian theory is a widely applicable
theory, allowing for the investigation into spin dynamics and
thermodynamics . Heisenberg’s theories in this area are used
in modern magnetism to investigate the magnetic properties of
metals.

2.4 The Uranium Club

The Uranprojekt or Uranverein was a Nazi program to investi-
gate the potential to produce nuclear weapons in World War
II (WWII) (Bernstein, 2001). Prior to Heisenberg conducting
research for the Uranverein, Uranium Club, his theories were
attacked by the Nazi Waffen-SS being labelled as “Jew Physics”
(Bernstein, 2001). There was an article in the official journal
of the SS that stated Heisenberg and all theories of quantum
physics were perceived as non-German but Jewish thinking.
Heisenberg used his family connection to receive an exonera-
tion on behalf of Heinrich Himmler, the head of the SS at the
time.

Heisenberg joined the Uranium Club shortly after the out-
break of World War II, where he was tasked with nuclear fis-
sion research. Within two months of his work Heisenberg es-
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tablished himself as the leading authority on nuclear fission.
Heisenberg published his finding in 1939, stating that the con-
trolled fission reactor would produce a bomb “which surpasses
the explosive power of the strongest explosive materials by sev-
eral orders of magnitude” (Bernstein, 2001). Heisenberg’s tech-
nical report would be the fundamental approach for the re-
search throughout the remainder of the war.

During the war Germany had nine task-oriented research
groups. Heisenberg was head of one of two research groups
focused on the construction of a reactor, which was located in
Leipzig, as well as an advisor on the Berlin research group.
Come 1942 Heisenberg took charge of both research facilities
and spilt his time equally. This allowed Heisenberg to have a
large impact on both of Germany’s reactor projects.

Heisenberg’s participation in the Uranium club is well doc-
umented, being the most prestigious out of the six leading sci-
entists (Bernstein, 2001). Heisenberg’s exact influences in the
group, however, are unclear, as there are arguments presented
that claim Heisenberg had in-depth knowledge on how to build
a bomb that he deliberately withheld from everyone (Bernstein,
2001). After his death, his wife supported the claims of insub-
ordination. She often stated that during a meeting with Bohr,
Heisenberg tried to persuade him that some sort of interna-
tional agreement should be reached before nuclear weapons
are made and used (Bethe, 2000). Heisenberg was also accused
of trying to pass German intelligence onto the Allies, a claim
that was backed up by drawings that were given to Bohr dur-
ing their last meeting that were transmitted to Los Alamos, the
birth place of the first atomic bomb (Bernstein, 2001).
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2.5 Later Work and Accomplishments

After World War II, Heisenberg worked to change the direc-
tion of his scientific research. In 1953, he became the president
of the Alexander von Humboldt Foundation. He was tasked
with gathering of international scientists and allowing them to
work in Germany. From the early 1950s onwards, he focused
his research on a “unified theory of fundamental basic parti-
cles” emphasizing the importance of symmetry principles. The
purpose of this research was to characterize physics of elemen-
tary particles. From 1957, he also became involved in plasma
physics and thermonuclear processes. He also worked with the
International Institute of Atomic Physics at Geneva. For several
years, he served as the chairman of the Scientific Policy Com-
mittee of this Institute and significantly steered this Committee.

Later in his life, he published several books discussing the
influence of atomic and nuclear physics on societies and cul-
tures. Aside from several medals and prizes, Heisenberg re-
ceived multiple honorary doctorates from the University of Brux-
elles, the Technological University of Karlsruhe, and the Uni-
versity of Budapest. He also received the Order of Merit of
Bavaria and the Grand Cross for federal services with star. Heisen-
berg retired in 1970 and passed away on February 1, 1976 due
to illness.
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3 Srinivasa Iyengar Ramanujan
(1887-1920)

Beyond Proof

By Taylr Cawte, Rebecca Beutel, Jocob Van Wasse-
naer, Ryan Fox, and Nikolaos Veriotes

Srinivasa Ramanujan contributed thousands of theorems to
the field of mathematics that are described as nothing less than
extraordinary. Almost 100 years after his death, mathemati-
cians like Ken Ono are devoting an entire career to extending
and proving Ramanujan’s results. While other mathematicians
are publishing their research only learn that Ramanujan had al-
ready made these discoveries. Ramanujan’s theorems are used
today by physicists to understand black holes while, during Ra-
manujan’s lifetime, these were unknown (Ono and Aczel, 2016).
Even more astonishing is how Ramanujan overcame the diffi-
culties throughout his life having survived disease, famine, ex-
treme poverty, and failing to obtain a degree from school.

3.1 Birth

Srinivasa Ramanujan was born on December 22, 1887 in Erode,
Tamil Nadu, to a poor religious Brahmin family. Initially, his
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mother, Komalathammal, could not conceive during the first
few years of her marriage and she believed through devoted
prayers to the family deity, goddess Namagiri by her father,
she was able to conceive and give birth to a son, Ramanujan.
His mother was a housewife, extremely spiritual often having
prayer meetings at her home, she would earn five to ten rupees
per month singing at the local temple that would help supple-
ment her husband’s very modest salary of twenty rupees per
month (Kanigel, 1992).

His father, K. Srinivasa Iyengar, worked as an accountant to
a cloth merchant in Kumbakonam. He was an absent father,
rarely home and paid little attention to Ramanujan when he
was at home and did not help his wife raising their son. Ra-
manujan was fortunate to have been raised by his mother who
was a strong-willed and authoritarian woman who affection-
ately call her son Chinnaswami or “little lord”. Like his mother,
Ramanujan had the same passionate temperament and grew to
resemble his mother and all her bulky body. Ramanujan had a
strong bond with his mother; he only left India after his mother
gave her permission to do so (Ramanujan, 1927).

3.2 Disease

India was a British colony during Ramanujan’s lifetime; famine
and disease were common during this period. All Ramanujan’s
siblings who were born shortly after him died in their infancy,
leaving him to grow up as the only child and the focus of the
family. He did not have any siblings until he was ten when his
mother gave birth to his brother, Lakshmi Narasimhan, in 1898,
and he later gained another brother when he was seventeen
after his mother gave birth to Tirunarayanan (Ono and Aczel,
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2016).
Srinivasa Ramanujan survived his childhood against unimag-

inable odds that killed thousands upon thousands of people in
India. At two years old he survived the smallpox pandemic, a
highly contagious disease having a mortality rate of 80% that
killed hundreds of thousands around the world. At seven, the
stress of his grandfather’s death from leprosy caused him to
break out in boils. At ten he survived the cholera epidemic that
killed fifteen thousand people, then at twenty-three Ramanujan
developed hydrocele, an abnormal swelling of the scrotal sac
that was likely caused by a mosquito-borne parasite called filar-
iasis that was endemic in South India. He later needed surgery
to remove the large hydrocele; his family had no money to pay
for the surgery, and his mother asked friends for help, but no
one came forward. Finally, in January 1910, Dr. Kuppuswami
volunteered to do the surgery for free (Kanigel, 1992).

3.3 Child Genius

As a child he often kept quiet and to himself and like Albert
Einstein, born eight years before Ramanujan, began to talk un-
usually late (Ono and Aczel, 2016). At age five Ramanujan at-
tended the local Kangayan Primary School in Kumbakonam;
two years later at seven he was admitted to the Town Hall high
school where in 1897 he passed his examinations achieving the
top position in the district; this achievement reduced his tuition
by 50%. At the age of ten he would tutor his fellow classmates
from his window because his parents would not allow him to
go outside. It wasn’t until his second year in school when his
curiosity and obsession were first noticed. In his fourth year
he borrowed Loney’s Trigonometry from his neighbour, a senior
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student at the school. His neighbour was in amazement that
Ramanujan read the book and could solve every problem in the
book without any aid. Afterwards, his neighbour would come
to Ramanujan to help him solve the more difficult problems of
his homework (Thakur, 2004). Later in school Ramanujan in-
dependently discovered a formula he thought was original by
him only to learn a mathematician, Leonhard Euler, discovered
it 150 years earlier. Embarrassed, he hid his paper in the ceiling
of his home (Kanigel, 1992).

At sixteen, in his sixth year of school he obtained a copy
of Carr’s Synopsis of Pure Mathematics that his friend borrowed
from the local government college. This book was the cata-
lyst that sparked his genius in mathematics. Each equation in
the book was a research for Ramanujan, without help, he de-
vised a method to construct magic squares. He then focused
his attention to geometry where he was able to calculate the
circumference of the earth at the equator within a few feet. He
found geometry limiting and changed his attention to algebra;
he would often say the goddess of Namagiri inspired him with
equations in dreams and upon his awakening he would write
notes of his dreams to work on during the day (Thakur, 2004).

3.4 Disappointments at School

In December 1903 Ramanujan passed the Matriculation Exami-
nation of the University of Madras and in the new year joined
the junior first in arts class of the government college of Kum-
bakonam winning the Subrahmanyam Scholarship that was awarded
to students who were proficient in English and mathematics.
Ramanujan’s obsession with mathematics continued to grow
and engulfing him to the point where he was completely obliv-
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ious of what was going on around him and neglecting other
subjects resulting in failing to advance in school and conse-
quentially losing his scholarship.

Ramanujan ran away briefly because of his failure but then
returned to school again only to fail getting his term certifi-
cate in 1905 due to lack of attendance. In 1906 he went to
Pachaiyappa’s College in Madras and had to withdraw after be-
coming ill. In December 1907, he wrote the F. A. Examination as
a private student and failed again. Having no degree Ramanu-
jan couldn’t get stable employment, but he kept on working on
mathematics writing in a notebook he always carried with him
(Kanigel, 1992).

When he was twenty-two years old, he wanted to get married
and settle down. His mother had already found him a bride a
year earlier and arranged the wedding without consulting her
husband. She was Janaki (Janakiammal) (March 23, 1899 - April
13, 1994), who was ten years old when they married on July
14, 1909. After the wedding Janaki went back to live with her
family until she reached puberty, when she returned in 1912 to
live with Ramanujan and his mother (Thakur, 2004).

3.5 Supportive Friends

Unfortunately, being from a poor family and not having a de-
gree made it extremely difficult to secure employment. He
went to see Mr. V. Ramaswami Iyer, the founder of the Indian
Mathematical Society, employed as the deputy collector asking
him for a clerical position in the municipal office. Ramanujan
showed him his notebooks that Ramaswami thought was in-
credible and instead of offering him a position he gave him a
letter of introduction to Mr. P. V. Seshu Aiyar, the principal of
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the Government College.
Seshu Airyar already knew Ramanujan; he was his math lec-

turer while Ramanujan was in school. Seshu Airyar gave Ra-
manujan a few months of work; after the work ended Ramanu-
jan earned money by private tutoring. Seshu Airyar later sent
Ramanujan a letter of recommendation to Diwan Bahadur R.
Ramachandra Rao who had already met Ramanujan, thinking
it would be cruel to Ramanujan and a waste of his great intellect
having to work as a clerk. Rao sent Ramanujan back to Madras
offering to pay his expenses.

Returning to Madras Ramanujan made other unsuccessful at-
tempts to secure a scholarship, during which time he contin-
ued writing in his notebook. Seshu Aiyar helped Ramanujan
publish in the “Journal of the Indian Mathematical Society”,
on February 1911, asking readers to evaluate x in the infinite
nested radicals

x =

√
1 + 2

√
1 + 3

√
1 + .... (3.1)

In December 1911 he published Some Properties of Bernoulli
Numbers and in 1912 he contributed two more publications. Six
months passed since he asked readers to evaluate the infinite
nested radicals, and, with no one coming forward, Ramanujan
decided to provide the solution to his infinite nested radicals
(Answer x = 3).

Ramachandra introduced Ramanujan to Mr. Griffith of the
Madras Engineering College to take an interest in him and Grif-
fith contacted Sir Francis Spring, the chairman of the Madras
Port of Trust. Afterwards it became easy for Ramanujan to se-
cure recognition of his work.

Griffith reached out to his former professor of twenty years,
Micaiah John Muller Hill, asking him to determine if there is
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any brilliance in Ramanujan’s work. In reviewing Ramanujan’s
work, he indicated that, “he [has] fallen into some pitfalls; some
of his results were simply absurd and should he wish to over-
come his evident deficiencies, he should consult Bromwich’s
Theory of Infinite Series Test”. Hill wrote again to Griffith,
without answering the question, but this time with more en-
couragement saying, “Mr. Ramanujan is evidently a man with
a taste for mathematics, and with some ability.” He went on
to write, “his educational deficit was hurting him, and many
mathematicians of earlier days stumbled over these duties, so
it is not surprising that Mr. Ramanujan working by himself has
erroneous results. I hope he will not be discouraged.” He did
not offer to take Ramanujan on as a student (Kanigel, 1992).

Ramanujan was encouraged by Seshu Aiyar, Sir Francis Spring,
and others to correspond with universities who may take an in-
terest is his work, and they helped him draft letters to Univer-
sity of Cambridge, providing them with samples of his work.
He wrote to H. F. Baker, a distinguished mathematician and a
fellow at the Royal Society who had been president of the Lon-
don Mathematical Society. Baker returned his work without
comment and declined to take him on as a student. Ramanu-
jan wrote to W. E. Hobson, a mathematician and a fellow of
the Royal Society that held Cambridge’s Sadleirian Chair. Like
Baker, Hobson also declined (Kanigel, 1992).

3.6 Getting Noticed

On January 16, 1913, Ramanujan wrote G. H. Hardy, a young
mathematician at Cambridge that was making the world of
mathematics take notice of his work, to send him 120 theo-
rems as a representative sample of his work. Hardy reviewed
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Ramanujan’s samples and then he wrote back acknowledging
he knew some of the theorems; others looked new and he
could work through them; and there were some that were be-
yond his understanding. Hardy shared the sample work with
his colleague John Edensor Littlewood, asking him “Genius or
fraud?” After examining the theorems, Hardy wrote, “these
could only be written down by a mathematician of the high-
est class”, to which Hardy added “They must be true because,
if they were not true, no one would have the imagination to
invent them”.

Hardy arranged for the University of Madras to give Ra-
manujan a scholarship and invited him to travel to England;
Ramanujan initially declined even though he had his friends,
influential people, and even the orthodox Brahmins urging him
to cross the oceans to England. It was only after his mother
proclaimed, she had a dream where the goddess Namagiri was
commanding her not to stand in her son’s fulfillment of his
life’s purpose, when Ramanujan departed India on March 17,
1914 arriving in Cambridge on April 30, 1914 (Kanigel, 1992).

Immediately, Ramanujan’s collaboration with Hardy led to
new mathematical developments. Ramanujan’s lack of formal
education would lead him to make mistakes that have since
been overcome with modern mathematics. Littlewood was asked
to teach Ramanujan modern mathematics, but he found it was
extremely difficult because every time some matter, which it
was thought that Ramanujan needed to know, was mentioned,
Ramanujan’s response was an avalanche of new original ideas;
this made it almost impossible to teach modern mathematics to
Ramanujan (Kanigel, 1992).

Ramanujan was an orthodox Brahmin and a strict vegetarian;
once a fellow Indian joked that the potatoes he was eating from
the college kitchen were fried in lard; true or not, Ramanu-
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jan never ate food from the college kitchen again. Ramanujan
started cooking his own food in his room and only using a pot
that was never in contact with meat. When Ramanujan did eat,
he did not always get the nourishment he needed, which could
have made him more susceptible to illnesses. In March of 1915,
Ramanujan was ill due to the winter weather and could not
publish anything for five months. While he continued to work,
the volume of work declined due to his illness.

In 1915, Ramanujan’s paper on Highly Composite Numbers was
a significant contribution to mathematics appearing in the Pro-
ceedings of the London Mathematical Society. In 1916 Ramanu-
jan and Hardy published the Asymptotic Partition Formula where
they developed a formula to determine the number of partitions
for number n expressed as p(n). For example, the number of
partitions for n = 4 were p(4) = 5, listed as

4 = 4 (3.2)

= 3 + 1 (3.3)

= 2 + 2 (3.4)

= 2 + 1 + 1 (3.5)

= 1 + 1 + 1 + 1. (3.6)

To test their formula, they enlisted the help of Percy Alexan-
der MacMahon, another mathematician at Cambridge known
as the calculator. Ramanujan asked MacMahon to calculate
the number of partitions of 200, it took MacMahon about one
month to determine there were 3,972,999,029,388 partitions. There
was only a relative difference of 0.004 in the value calculated us-
ing the formula. In March of 1916, Ramanujan was awarded a
bachelor’s degree from Trinity College for his contributions to
mathematics (Kanigel, 1992).
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3.7 Beginning Of The End

At beginning of 1917, Ramanujan became very ill, and many of
his doctors thought he would die soon; spending most of the
year in bed, he continued to work. Ramanujan showed some
improvement in his health by September of that year but re-
mained in bed most of the time. Hardy, fearing Ramanujan’s
death and willing to recognize his contributions to mathemat-
ics, approached the Cambridge Philosophical Society and the
Royal Society of London making a recommendation along with
supporting recommendations from other mathematicians in-
cluding MacMahon, Grace, Larmor, Bromwich, Hobson, Baker,
Littlewood, Nicholson, Young, Whittaker, Forsyth and White-
head, to make Ramanujan a fellow. On May 2, 1918, Ramanu-
jan was elected fellow of the Royal Society of London, and on
October 10, 1918, he was elected a Fellow of Trinity College
Cambridge—he then had the right to walk on the grass in the
college courts. The recognitions given to Ramanujan raised his
spirits, and his health improved a little; he renewed his efforts
in developing theorems (Kanigel, 1992).

Ramanujan left Cambridge in February 1919 returning to In-
dia; during his voyage home and in the subsequent year his
health began to deteriorate. Many of his influential friends
came to his aid, providing Ramanujan with the best doctors
and medical care, but his condition continued to deteriorate.
As his health declined, his visions from the goddess Namagiri
kept coming to him and he wrote them down on sheets of pa-
per while he was rarely resting. It was as if Ramanujan knew
his life was coming to an end. He began to work fanatically
during the last four days of his life. He asked his mother to col-
lect all his notes, put them in a box and to send them to Hardy
in Cambridge so that his theorems would not die with him. On
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the morning of April 26, 1920, Ramanujan fell into a coma and
died in the afternoon (Ono and Aczel, 2016).

If we were to only examine Ramanujan’s contribution to math-
ematics, it could only be described as astonishing. That only
tells you of his accomplishments and nothing about the man
and his struggles in life. Ramanujan survived diseases and
famine that killed hundreds of thousands during his lifetime.
He taught himself mathematics from a young age, scoring first
in the school district; yet, sadly he failed to graduate. He grew
up in poverty not having enough money to eat or even buy
paper for his notes, so he often used chalk to write his formu-
las on the ground. Yet through all of this adversity and with
the help from some friends to get him noticed at Cambridge,
he leaves us with theorems that we are only starting to under-
stand today. Ramanujan was and continues to be a remarkable
mathematician (Ono and Aczel, 2016).

“An equation means nothing to me unless it expresses a thought
of God.”—Srinivasa Ramanujan
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4 Muhammad ibn Musa
Al-Khwarizmi (c.780-c.850)

The Father of Algebra and Algorithm

By Matthew Tam, Victor Huong, Hashim Al-Hashmi,
Sean Usher, and Daquan Barrow

Society continues to develop and advance rapidly, but it is
only able to do so because of the foundation of knowledge that
has been built by past scholars. These influential figures pro-
vided the fundamental building blocks that evolved into the
current fields of science, technology, engineering, and mathe-
matics. It should be noted that without the contributions of
these scholars, the world as it is currently known would never
have come to exist. Therefore, it is important to gain an under-
standing of these scholars in order to evaluate their impact on
the development of society.

4.1 The Birth of Algebra

Of these numerous past scholars, Muhammad ibn Musa Al-
Khwarizmi was an Iranian mathematician that was considered
to be one of the greatest minds of his time. The exact de-
tails of his birth have been lost, but it is assumed that Al-
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Khwarizmi was born in approximately 786 AD to a Persian
family in the Abbasid dynasty (Leaman, 2006). Given the dis-
tinction of the epithet “Al-Khwarizmi”, he is thought to have
been born in Khawarizmi. However, a historian named Al-
Tabari identified Al-Khwarizmi with an additional epithet of
Al-Qutrubbulli and this indicates that he was actually from
Qutrubull (van der Waerden, 2013). In 813 AD, Al-Ma’mun be-
came the sixth Caliph of the Abbasid dynasty and subsequently
invited Al-Khwarizmi to become a member of the House of
Wisdom. The House of Wisdom was a form of accredited academy
for scholars in Baghdad that acted as the centre for knowledge
(van der Waerden, 2013). It was during his time in the House
of Wisdom that Al-Khwarizmi gained the necessary knowledge
and resources to develop and produce several groundbreak-
ing pieces of work. Under the patronage of Al-Ma’mun, Al-
Khwarizmi wrote several works that helped contribute to the
modern day fields of algebra, algorithms, geography, and many
others. Al-Khwarizmi became one of the first scholars to pro-
duce works on the problems of Al-jabr and Al-muqabala (van der
Waerden, 2013). This was documented in his translated book
titled, The Compendious Book on Calculations by Completion and
Balancing, which was also translated in Latin to Liber Algebræ
et Almucabola. It is from this translation that the word Algebra
was derived and the subsequent identification of Al-Khwarizmi
as the father of algebra. Al-Khwarizmi also wrote about arith-
metic and popularized the use of Hindu-Arabic numerals after
his work was translated in Latin to Algoritmi de numero Indo-
rum (van der Waerden, 2013). This Latin translation rendered
Al-Khwarizmi’s name as Algoritmi and resulted in the term
“Algorithm”. Therefore, it can be seen that Muhammad ibn
Musa Al-Khwarizmi was an influential scholar of the past that
laid the foundation for modern mathematics and engineering.
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Al-Khwarizmi is most renowned for his work in algebra that
involves methods and solutions for solving linear and quadratic
equations. Al-Khwarizmi often uses examples through text and
pictures to demonstrate how his solutions work. This was done
in part because the era of algebra was only starting to sprout
and modern notations for mathematical equations had not yet
been invented. It is important to note that the foundation of
algebra began a movement away from traditional Greek mathe-
matics, which focused on geometry, and used numerical equa-
tions with numbers and expressions to explain mathematical
concepts. Al-Khwarizmi is the first author to write about solv-
ing mathematical problems using “Al-jabr” (later known as al-
gebra) and “Al-muqabala”. Al-jabr is the process of removing
negative units, roots, and squares from an equation by adding
the same quantity to each side. For example, the following op-
eration uses the process of Al-jabr’

x2 = 30x− 4x2 → 5x2 = 30x. (4.1)

On the other hand, Al-muqabala is the process of bringing
quantities of the same type to the same side of the equation. For
example, the following operation is the process of Al-muqabala

x2 + 14 = x + 5→ x2 + 9 = x. (4.2)

It is evident that the process of Al-muqabala already staisfies
the process of Al-jabr. In the book, The Compendious Book on Cal-
culation by Completion and Balancing written by Al-Khwarizmi,
he describes how to solve simple quadratic and linear equa-
tions using what he called the solution of six types (van der
Waerden, 2013). The types are as follows:

1. Squares equal roots: ax2 = bx.

31



4 Muhammad ibn Musa Al-Khwarizmi (c.780-c.850)

2. Squares equal number: ax2 = c.

3. Roots equal number: bx = c.

4. Squares and roots equal number: ax2 + bx = c.

5. Squares and number equal roots: ax2 + c = bx.

6. Roots and number equal squares: bx + c = ax2.

It can be jarring and difficult to understand what Al-Khwarizmi
meant by this. However, historians and biographers were able
to interpret the meaning of these six types. If we were to look
at a simple algebraic expression for example, ax2 + bx + c = 0,
the first term is represented as “square” in Al-Khwarizmi’s
methodology, “roots” would be bx, and finally number is rep-
resented by c in today’s algebra. By following Al-Khwarizmi’s
methodologies, one would be able to solve all of the types of
equations including the quadratic equation. The difference be-
tween Al-Khwarizmi’s work and other mathematicians during
his era is that he ensured that an organized and procedural ap-
proach was used to find solutions to equations, which is much
more akin to what we have today. Without Al-Khwarizmi, the
foundations of algebra would have not been laid out in a sys-
tem that is fluid and easy to interpret. If there is one thing he
should be remembered for, it is that he was one of the brilliant
minds of his generation that was responsible for the beginnings
of algebra, a tool we use centuries later.

Additionally, Al-Khwarizmi’s contributions to mathematics
were not entirely focused on algebra as his practices lead to
simplifying the art of multiplication. In mathematics, multi-
plication is filled with countless methods and tricks which are
implemented for simplicity in calculations. One of those meth-
ods was developed from Al-Khwarizmi’s work and it is known

32



4 Muhammad ibn Musa Al-Khwarizmi (c.780-c.850)

Figure 4.1: Lattice Multiplication method.

as the lattice (or sieve) multiplication method. It is defined as a
method for multiplying large numbers as it is generally noted
as algorithmically equivalent to long multiplication. Overall,
in today’s age, this historical method still poses significance in
diverting the education of long multiplication. A general pre-
sumption on how the lattice method is portrayed in Fig. 4.1
that demonstrates 58× 213 = 12354.

This method is simpler than perceived, as it consists of simple
multiplication and addition operations throughout the diagonal
channels. Firstly, a grid is drawn with diagonal lines intersect-
ing each square. Once the template is laid out, a multiplier is set
along the top columns (58), and the other one along the right of
the rows (213). Next, each integer is multiplied with the aligned
integer from the other multiplier with the respective answer
placed in between the intersecting squares (e.g. 8× 2 = 1/6).
Finally, the addition procedure is implemented on the diagonal
columns, which are actually inclined columns, starting from the
bottom right column of the grid (e.g. 4 = 4, 8 + 2 + 5 = 15, ...).
Values calculated from adding those columns are placed along
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the bottom left of teach column, with the tens carried always
to the left column. The final result of the lattice procedure is
read off down from the left (123), and across to the right from
the bottom (54) to give 12354. Further, this method was popu-
larized and introduced to the world by Leonardo of Pisa (com-
monly known as Fibonacci). However, Al-Khwarizmi’s work
has not been forgotten as his Latin name gave rise to the term
“Algorithm”.

4.2 The Birth of Algorithm

An algorithm is a mathematical procedure depicting a solution
to a problem. Al-Khwarizmi used algorithms to illustrate his
algebraic solutions. The development of algebra began with
the Babylonians as opposed to Greeks who followed a more
geometric approach. The Babylonians used geometry and algo-
rithms to develop the “geometric algebra”. As time progressed,
algorithms were transformed into an “equation solving” recipe
that was not justified or formed using geometry. In approxi-
mately 825, Al-Khwarizmi wrote what is now defined as the
first true algebra text. Within his treatise, The Compendious
Book on Calculation by Completion and Balancing, Al-Khwarizmi
uses algorithms to present his findings and defines six types
of equations that solve linear and quadratic problems. The al-
gorithms depicted in the text are verbally based, no symbols
are used within their expression. Alternative to the Babyloni-
ans, Al-Khwarizmi only expected the reader of his text to use
the algorithm developed, not the geometry used to justify the
algorithm. Al-Khwarizmi presented his findings mainly using
abstract problems unlike the Babylonian mathematicians before
him who utilized problems that contained widths and lengths.
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To solve his abstract problems, Al-Khwarizmi would first sim-
plify them and then apply the algorithm he developed. Al-
Khwarizmi shifted algebra from a geometric base to a static
equation base for solving problems (van der Waerden, 2013).

Comparatively, Golden Age mathematicians in the middle
east, who developed their papers after Al-Khwarizmi, justi-
fied their math by simplifying their problems and then us-
ing an algorithm to find the solution. The algorithms used
by Al-Khwarizmi, his Babylonian and Greek predecessors, and
Golden Age successors are limited, as they are unable to solve
equations that have a degree higher than two. Historians have
argued that Al-Khwarizmi used Hindu, Hellenistic, post-Hellenistic,
or Greek sources to assist in developing his algebraic work
(van der Waerden, 2013).

4.3 Work on π

Al-Khwarizmi referenced a value for π within one of his books
on astronomy that equates the estimate of π derived by Aryab-
hata, a Hindu astronomer, to sixty two thousand eight hundred
and thirty-two divided by twenty thousand, which calculates
to (van der Waerden, 2013)

π ∼ 62832
20000

= 3.1416. (4.3)

Al-Khwarizmi also referenced a value for π in his book that
elaborated on Hindu-Arabic numerals. Although his original
text has been lost, a Latin translation of his book was created
and titled, Algoritmi de numero Indorum. It should be known
that the Latin transcriber translated Al-Khwarizmi’s name as
“Algoritmi” which gave birth to the word “Algorithm”. Al-
Khwarizmi’s work on Hindu-Arabic numerals has been con-
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ceived as being the source that spread the Hindu-Arabic nu-
meral system across Europe and the Middle East. Europeans
and Middle Easterners were able to read Al-Khwarizmi’s work
on Hindu-Arabic numerals after his book had been translated
into various languages. Al-Khwarizmi also estimated the value
of π to be approximately three plus a decimal value of one di-
vided by seven (van der Waerden, 2013)

π ∼ 3 +
1
7
= 3.1429. (4.4)

Both Persian and Hindu sources were used by Al-Khwarizmi
when he was developing his astronomical tables. Centuries
later, Al-Khwarizmi’s algorithmic proofs are still being used to
solve algebraic problems. The algorithms Al-Khwarizmi de-
veloped created a foundation for future mathematicians to use
and help solve complex problems up to a degree of the second
order.

4.4 The Advancement of Geography

Al-Khwarizmi is a multifaceted scholar who indulged in the
sciences that intrigued him during his era. Al-Khwarizmi is
mostly known for his development of the algebraic founda-
tions, but he also used his advanced knowledge in other areas
of study such as geography. Throughout human history most
societies wanted to know their bearings in relation to other
places. In the Golden Age of Middle East, concurrent to the
Middle Age in Europe, geography was defined as the study of
places and the relationships between people and their environ-
ment; it was given little attention as a major academic pursuit
in Europe. However, scientists from the Middle East and North
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Africa in the Golden Age were making headway in advanc-
ing the field. Caliph Al-Ma’mun, who greatly encouraged the
development of science and philosophy, played a key role in
this development as he amalgamated a large number of geog-
raphers, who were led by Al-Khwarizmi. This group of schol-
ars worked on many projects that included the determination
of the circumference of the earth and making one of the most
detailed maps of the known world for their time (Karagözoğlu,
2017).

Al-Khwarizmi had access to a wealth of texts as a scholar of
the House of Wisdom and had taken note of texts written by
Claudius Ptolemy. Ptolemy was a distinguished Greco-Roman
scholar that made movements in the fields of astronomy and
geography during his time. Al-Khwarizmi would later use
Ptolemy’s work on geography as a template to create his very
own book by the name of Kitab Surat Al-Ard, which translates to
The Image of The Earth. In this book, Al-Khwarizmi arranged his
work using the Greek system of the seven climes to present his
data (Karagözoğlu, 2017). For example, one of the climes would
be dedicated for cities, and Al-Khwarizmi would provide a list
of coordinates, longitudes and latitudes, for these cities. The
climes he chose to present data for were the cities, mountains,
seas, islands, the central points of various geographical loca-
tions, and rivers. The list consisted of approximately 2402 co-
ordinates in total. Despite his reputation as the “father of Alge-
bra”, Al-Khwarizmi was a true geographer as he sought to un-
derstand where things were found, why they were there, and
how they changed over time. Al-Khwarizmi’s work created a
stepping stone for future geographers and mathematicians to
revise the coordinate system and maps to the point where we
have a better understanding of our surrounding areas today.
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4.5 Foundational Achievements

Al-Khwarizmi’s greatest contribution to society is his book, The
Compendious Book on Calculation by Completion and Balancing. This
book contains the very beginnings of algebra and is paramount
to the development of many technologies today. It is also worth
considering that the algorithm, originally developed by Al-Khwarizmi,
is the foundation on which all computer software are built and
used by almost everyone today, more than 1000 years later. As
far as other disciplines go, Al-Khwarizmi has imprinted his
legacy in mathematics, astronomy, and geography. Therefore,
it can be seen that Al-Khwarizmi is one of the many past schol-
ars that helped build the foundation of knowledge and will be
forever regarded as one of the greatest minds of mathematics.
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5 Leonhard Euler (1707-1783)

A Gifted Mathematician

By Luc Carney, Kyle Friesen, Victoria Golebiowski,
and Jeffrey Horbatuk

Over time many incredible contributions have been made by
a variety of math and science pioneers. One of these outstand-
ing pioneers, who stands out among others as having made
such a wide variety of contributions to basic theories, meth-
ods, and experiments, is Leonhard Euler. Some of his famous
contributions, gifts, and discoveries will be discussed in this
biography. Euler was a mathematician who will never be for-
gotten and one who is definitely a role model for researchers
everywhere.

5.1 Background

Euler was born in the year 1707 in Basel, Switzerland, and
studied with the famous Bernoulli family and under Johann
Bernoulli at Basel University. Euler found it difficult to find
the appropriate recognition for his breakthroughs that he de-
served since he was in the shadows of the Bernoulli family. For
this reason, Euler spent much of his academic life in Russia
and Germany instead. As a mathematician that had an interest
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in almost all topics; his collection of work reached almost 900,
many of which were not published during his lifetime. By the
time Euler reached the age of 68, he is said to have produced
approximately one mathematical paper every single week. Eu-
ler lived until the age of 76 years old when he unfortunately
died from a brain hemorrhage. Although Euler is remembered
as a brilliant mathematician, his life was not always positive.
In the year 1771, Euler was faced with a tremendous tragedy,
a house fire, where he lost his wife and his house. Euler pro-
ceeded to marry his half-sister in law and this marriage would
last until his death. In addition to the tragedy of his house fire,
Euler also became blind in his late years which would of course
become a challenge to his life of studies.

5.2 Early Career: The Transfer to the
Academia

After his time spent learning from Johann Bernoulli at the Uni-
versity of Basel, Euler had decided to take on mathematics as
a career. He applied for a position at the University of Basel,
backed with the support of Bernoulli (Assad, 2007). However,
when he asked to meet with the chair of physics at Basel, he
was denied (Assad, 2007). Likely feeling disrespected, this dis-
couraged Euler from considering the position he had applied
for. At this time, Johann’s sons, Nicolaus and Daniel Bernoulli,
had moved away to St. Petersburg in order to join the Rus-
sian Academy and were encouraging Euler to join them. Euler
had become quite close with the brothers during his learnings
with their father, thus enhancing the appeal of this option. His
decision was solidified when the brothers were able to offer a
position in physiology at the Russian Academy (Assad, 2007).
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This move helped further his career as it established his reputa-
tion as a mathematician in Europe (Assad, 2007). Euler would
work and live with Daniel for six years in St. Petersburg before
Daniel would decide to return to the University of Basel (As-
sad, 2007). This would result in Euler becoming the chair of the
mathematics at the Academy. During these years, Euler would
go on to do important research that would be the foundation of
his legacy. The first big milestone Euler would overcome would
be to solve the Basel problem (Assad, 2007). This problem was
made famous by the Bernoullis for its difficulty, as Johann was
only ever able to define bounds for the series of the sum of in-
verse square of integer numbers, but, however, he was never
able to solve it. Surpassing his former professor, Euler was able
to find a solution to the series, thus further disguising himself
amongst his colleagues in his respective field. The series and
its solution are given by

∞

∑
n=1

1
n2 =

1
12 +

1
22 +

1
32 + ... =

π2

6
. (5.1)

5.3 Early Career: Ship Building

Euler’s first major area of contributions was in the ship building
field where he focused on survivability and safety of ships. Eu-
ler’s studies in ship building are actually related to rigid body
studies. In the year 1765, Leonhard published Theoria motus cor-
porum solidorum seu rigidorum or Theory of the motion of solid or
rigid bodies (Marquina et al., 2016). This publication describes
the way in which Euler speculated that the motion of a ship
could be described by a translational force along with a rota-
tion about an axis that passes through the ship’s center of grav-
ity (Calinger, 2015). Since Newton had already introduced the
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law of motion describing the translational force, Euler identi-
fied that a similar law would need to exist for the rotational
force. After much calculation and theoretical application, the
“Euler equations” were published that describe the rotation of
a rigid body, using a rotating reference frame with its axes fixed
to the body and parallel to the body’s principal axes of inertia.

5.4 Mathematical Contributions

Euler was very clearly a gifted individual who possessed both
a photographic memory along with sharp mental calculation
skills. Some of Euler’s contributions or popularizations within
the specializations of mathematics were critical for internation-
alization, which lead to collaboration globally for all types of
problems. Some of these popular notations include e, the base
of the natural logarithm, the imaginary unit i, which represents
imaginary numbers, f (x) or the function of some variable x,
and ∑ x, the sum of some numbers or expressions. He also
popularized the use of constants for example a, b, and c in a
triangle to represent side lengths or angles. In addition, Euler
spent much of his time focusing on trigonometric functions and
therefore popularized the use of sin, cos, tan, cot, sec, and csc
among others. Finally, Euler also contributed to a major math-
ematical symbol known by almost all people of the world, π,
which is the ratio of a circle’s circumference to its diameter.
Among all of these foundational findings and contributions,
Euler can be identified easily by the popular “Euler formula”.
The formula is written as

eix = cos(x) + i sin(x). (5.2)

This formula describes a relationship between trigonometry,
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exponentials, and complex numbers and is used vigorously in
calculus, quantum mechanics, fluid dynamics, and in fact all
of physics. However, Leonhard Euler did not stop there. In
addition, another mathematical equation known as the “Euler
Identity” exists and can be written as

eiπ = −1. (5.3)

This identity is described by many to be an amazing and ex-
plosively beautiful composition of arithmetic, calculus, trigonom-
etry, and complex analysis, which combines many of the math-
ematical notations described earlier.

Leonhard Euler was an extremely talented and gifted math-
ematician who made incredible and significant contributions
to mathematics. The topics of Euler’s contributions in mathe-
matics have a large span encompassing areas such as analysis,
number theory, topology, combinatorics, graph theory, algebra,
and geometry. When speaking in terms of applied mathemat-
ics, Euler made significant contributions in the topics of me-
chanics, hydraulics, acoustics, optics, and astronomy. Euler is
known to have made so many contributions to the fundamen-
tals of so many subjects, that is actually rare to find an area of
study which he did not contribute to.

5.5 Vision Loss

One of the most impressive aspects of Euler’s accomplishments
was how he overcame the limitation of his blindness. Dur-
ing his time researching the cartography of Russia, Euler came
down with a nearly fatal fever that years later would lead to
the loss of sight in his right eye. Despite being partially blind at
this point in his life, Euler did not let this slow him down as he
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became extremely involved with the observational astronomy
at the Berlin observatory. It wouldn’t be until 1771 when Euler
would become completely blind due to complications from a
surgery. This too proved to be nothing more than a slight in-
convenience as he learned to cope with his blindness. Johann
Bernoulli once wrote the following about Euler describing how
he overcame this new limitation: “... it is true that he cannot
recognize people by their faces, nor read black on white, nor
write with pen on paper; yet with chalk he writes his mathe-
matical calculations on a blackboard very clearly and in rather
normal size; these are immediately copied by one of his ad-
juncts, Mister Fuss and Golovin (most often the former), into a
large book, and from these materials are later composed mem-
oirs under his direction.” Using this method, Euler was able to
write as many articles as when he had full eyesight.

5.6 The Gentleman

Euler had a calm and peaceful mind although he was confi-
dent in his abilities in the respective fields. Humble in na-
ture, he would often pay his respects to his predecessors by
acknowledging their previous work, even if he significantly dis-
approved upon their work (Assad, 2007). Euler enjoyed the sci-
entific advancements that were made by him and his fellow col-
leagues as he took great pleasure in familiarizing himself with
their research. Euler showed great respect for his associates, as
he once delayed publishing his early findings in order to allow
his associate, Langrange, to take full credit for the use of supe-
rior methods (Assad, 2007). Euler had a thirst for knowledge
that could not be quenched thanks to his seemingly limitless
memory. His mind was so impressive, he was capable to sum
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complex series to the 17th term all in his mind. He would even
be able to memorize numerous numbers and their several re-
spective decimal figures. Euler’s memory excelled in both vi-
sual and aural aspects, as he was able to recite the entire novel
of Virgil’s Aeneid since early in his youth (Assad, 2007). Beyond
having a great mind, Euler was a family man. He was able to
peacefully work while amusing all of his children without any
sign of impatience (Brüning, 2008). At any time, he could stop
what he was doing in order to address his children, partake in
a completely different activity, and then be able to return to his
work, as if he was never interrupted (Brüning, 2008).

5.7 To the Very End

Euler had a passion for science that did not dwindle with age.
Days away from death, he suffered from vertigo, yet continued
to calculate the motion of balloons. Euler passed away from
intracerebral hemorrhage during a heated conversation about
the newly discovered planet, Uranus (Assad, 2007). Almost
comedically, his last words were “I am dying”. Despite the
misfortune of losing such a brilliant mind, it is comforting to
know he died the way he lived, doing what he loved.

5.8 True Balance

Euler’s influence on modern day mathematics and physics is
immeasurable. The hundreds of articles he has published have
been used to guide the next generations of mathematicians, sci-
entists, and engineers. Leonhard Euler popularized the use
of notations such as e, the base of the natural logarithm, the
imaginary unit i, f (x) or the function of some variable x, and
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∑ x, or the sum of some numbers or expressions. Euler was
able to overcome many challenges such as his blindness in his
later years without the sacrifice of productivity nor quality. De-
scribed as being calm and well-tempered, Euler treated those
around him kindly and with respect. This goes for his fellow
colleagues as well as his family, with the former being very pre-
cious to him. Above all, Euler took a pleasure in his work that
transcended time, as he continued his work till his very death.
Leonhard Euler left behind an irreplaceable legacy and many
contributions to the fundamentals of various math and science
disciplines that proved to be necessary for future advancement.
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6 Adolf Eugen Fick (1829-1901)

Founder of a Timeless Law

By Alex Nauta, Jacob Karl, Brett Clarke, and Maria
Bovtenko

6.1 Life and Achievements

Adolf Eugen Fick was a German-born physiologist who revolu-
tionized the fields of cardiology and medicine over the course
of his life. Fick is widely respected in the scientific community
due to his well-known Laws of Diffusion, which partly state
that the gaseous volume of flow moving across a fluid plate
is related to the surface area, thickness of the plate, and the
difference in partial pressures between both sides of the plate.

Born into an immensely successful family in Kassel, Ger-
many, in 1829, Fick’s father was a municipal planner, with one
brother working as a professor of anatomy and another as a
professor of law at the University of Marburg, where Fick first
pursued his studies. The youngest of nine children, Fick was
raised as a Protestant, with no specific church affiliation. This
upbringing resulted in Fick having a strong moral code of con-
duct, which served him well throughout his professional career.
Marrying Emilie von Coelln in 1862, Fick would father five chil-
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dren, two of whom would die at birth. At the advanced age of
70, Fick retired, but it would be short lived and a few years
later in 1901, he passed due to cerebral hemorrhage. Scientific
endeavours appear to run in Fick’s family, as his nephew with
the same name would eventually invent the contact lens.

Fick started off his career in the broad field of physiology,
applying mathematics and physics, much like his father and
brother, before realizing he had an affinity for the medical field.
An individual who had a profound influence on impacting
Fick’s career path was his teacher at the University of Marburg,
Carl F. W. Ludwig. Ludwig would teach over 200 medical sci-
ence students over the course of his career and would work to-
gether with Fick throughout his professional life (Vandam and
Fox, 1998).

Fick greatly benefitted from the generation he grew up with,
as Otto von Bismarck had recently unified Germany as a single
state, greatly increasing the spread of knowledge and sense of
national pride in technology and science. The stability offered
by this central government allowed for an era of rapid inno-
vation, ushering in the Industrial Age, as Germany was now
a single entity that could interact with, and receive ideas and
information from, other Western countries such as Britain or
France.

After leaving the University of Marburg, Fick relocated to
Berlin in 1849, where he advanced his medical knowledge by
listening to industry titans such as Johannes Schonlein and
Bernard Langenbeck. Coming back to Marburg in 1851, he
received an M. D. degree for a dissertation on the optic tract
(Vandam and Fox, 1998). Following this, he replaced Ludwig
as Chair of Anatomy and Physiology in Zurich for a short pe-
riod of time, eventually ending up in a related role in Wurzburg
for 31 years (Vandam and Fox, 1998).
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6.2 The Columbus of Cardiology

While Fick was a talented physicist and mathematician, he was
also responsible for numerous key advancements in cardiology
that greatly improved the discipline’s precision and methodol-
ogy through adoption of instrumentation and theory practiced
in physics. Fick, coming from a long line of scholars, dedicated
his life to the understanding of problems found at the cross-
roads between physics, physiology, and medicine. His personal
monograph Medizinische Physik stated his personal interest in
the fields ranging from molecular physics to optics; his keen
analytical mind and strict adherence to physical laws allowed
him to acquire great success in these fields.

Perhaps most famously, Fick is known as the first person to
determine the cardiac (ventricular) output of the heart, which
is equivalent to the amount of blood flowing through the lungs,
now called Fick’s Principle. Even more extraordinary was that
he determined this relation purely through deductive reasoning
and a firm understanding of the law of conservation of mass.
Strangely, he did not provide experimental proof to support
his famous statement, and it took until 1930, sixty years after
its enunciation, for the principle to be immutably proven. With
his strong aptitude for math and physics, Fick was able to deter-
mine scientific truths far earlier than any of his peers (Shapiro,
1972).

Fick’s Principle, while developed almost 150 years ago, con-
tinues to have a profound impact on the field of cardiology to
this day, where it is enormously useful in determining blood
flow through an organ. But his pioneering breakthroughs were
not solely limited to hemodynamics; his gift for mathematical-
physical thinking also enabled breakthroughs in the mechan-
ics of the musculo-skeletal system. He was particularly inter-
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ested in the origins and nature of body heat generation and
frequently sought to determine the substance responsible for
supplying the muscles with chemical energy. During experi-
mentation, he carefully measured the heat generated through
muscle contraction, and developed the terms isotonic and iso-
metric to help describe the process of muscular contraction. As
a result of his efforts, he was able to conclude that chemical
energy was directly converted to kinetic energy and that the
strength of muscle contraction was a function of the length of
the muscle fibre (Shapiro, 1972). By the end of his 47-year ca-
reer, Fick studied the physiology of muscles, resulting in an
extraordinary 37 papers as well as 16 doctoral dissertations on
the subject (Shapiro, 1972).

While Fick was a prolific publisher and researcher of the me-
chanics of the skeletal system, he was also well known for his
pioneering work in numerous areas related to medical physics.
Working in the same vein as other giants of his time such as
Carl Ludwig, and Hermann von Helmholtz, Fick made ground-
breaking progress in the development of medical instrumenta-
tion. He developed a plethora of medical measuring devices
such as the pneumograph and an improved aneroid manometer
(Shapiro, 1972). Also, he developed the Imbert-Fick law, which
related the deformation of the cornea to intra-ocular pressure,
which led to the development of the first practical device for
measuring intra-ocular pressure.

6.3 Climbing to the Top of His Field
and the Top of a Mountain

A physicist, a cardiologist, and a mountain climber, in 1865,
Fick along with fellow professor Johannes Wislicenus would
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seek out to determine what fuels the human body, and how
better to do it than to climb a mountain in Switzerland. The hy-
pothesis they sought to prove was put forth by chemist Justus
Liebeg in 1842 and stated that proteins alone powered muscle
contractions (Heggie, 2016). In this model, during exercise mus-
cles were powered by chemical reactions that broke down the
muscles and liberated energy, which was converted into move-
ment and heat, and the muscles were then rebuilt during rest
periods.

During this turbulent time in Europe, many nations were
concerned with how to keep their populations and soldiers
fuelled and fed to increase economic and industrial output.
Liebeg’s theory was heavily supported by anecdotal evidence
and inferred knowledge; it was widely known and published
that high protein diets resulted in higher energy and were widely
used by athletes of the time to increase performance.

By 1865, Liebeg’s theory had experienced only minor chal-
lenges that published limited results due to Liebeg’s influence
and respect in the field. However, Fick and his partner Jo-
hannes Wislicenus were determined to challenge the theory
and would choose Mount Faulhorn as their “laboratory”, where
they would burn calories by climbing the mountain and com-
pare the associated energy to the protein breakdown in their
bodies. “We preferred the mountain to a treadmill, not merely
because the ascent is a more entertaining employment, but chiefly
for the reason that we had no suitable treadmill at our disposal”
(Russel, 1996).

In order to conduct their experiment, the body was looked at
as a machine in thermodynamic terms with specific inputs and
outputs that could be determined. If Liebeg’s theory was true,
the amount of protein broken down as measured by the urea
content in their urine would be equal to the amount of calories
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(energy) used to climb the mountain, as no additional dietary
protein was consumed during the ascent. The results at the end
of the eight-hour climb were clear, accounting for only the min-
imum required calories (energy) to ascend the mountain; it was
suggested that the breakdown of protein alone provided insuf-
ficient energy and the body must draw energy from another
source (Heggie, 2016).

Fick’s findings would have direct impacts on the scientific
community as well as national policy, however not all the feed-
back would be positive. Well into the 1870s Fick would be crit-
icized for his role in disproving Liebeg’s theory; however, he
would stand by his findings and refused to back down. More
positive feedback came from the United Kingdom, where the
chief military doctor would change the diets of soldiers based
on their findings (Heggie, 2016).

6.4 Fick’s Laws of Diffusion Still
Relevant Today

Aside from Fick’s physiology contributions, his arguably most
well-known achievement is the development of the Fick’s Laws
of Diffusion in 1855 (Koiwa, 1998). It was Fick’s interaction
with Carl Ludwig that began his involvement with diffusion,
since Ludwig, as a professor of anatomy and physiology, was
interested in diffusion through membranes (Tyrell, 1964). Fur-
thermore, Fick’s work stemmed from the experimental study
of diffusion that was first researched by Thomas Graham, who
developed qualitative and quantitative data based on the exper-
iments he conducted on diffusion (Tyrell, 1964). Using this data,
Fick went on to uncover the basic laws that govern the transfer
of material from one layer of a solvent to another (Tyrell, 1964).
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Fick described the process of diffusion using two groups of
molecules, one of species A and one of species B, where the
attraction between two different groups of species was greater
than the attraction between two of the same group (Tyrell, 1964).
From placement of the two species adjacent to each other, he
found that species A would be drawn to a region where species
B was previously, and species B would be drawn to the region
where species A was previously (Tyrell, 1964). This process
would continue until both species were uniformly distributed
throughout the whole region (Tyrell, 1964). Fick compared this
discovery, his basic law of diffusion, to the spreading of heat in
a thermally conducting material according to Fourier’s Law of
Conduction and electricity flowing in a conductor according to
Ohm’s Law (Tyrell, 1964).

After defining the basic law through his experiment with
molecule species, Fick continued his work by applying this law
to real systems, ultimately determining that upon mixing the
volume change in the solvent can be neglected (Tyrell, 1964).
From this discovery, Fick was able to narrow down that the
driving force behind diffusion was not the solution density gra-
dient, but it was the concentration gradient, known as the Fick’s
First Law of Diffusion (Tyrell, 1964). Furthermore, Fick did not
stop there, he proceeded to focus his attention on the develop-
ment of his second law, known as Fick’s Second Law of Diffu-
sion, where he would need to demonstrate that the diffusion
coefficient in his equations was independent of concentration
in order to confirm his law (Tyrell, 1964). He persevered and
tried several possibilities until he devised a technique using a
column with sodium chloride crystals at the bottom with a con-
stant supply of fresh pure water at the top, which demonstrated
that the concentration distribution at the top of the column was
characteristic of a time-independent state (Tyrell, 1964). Ulti-
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mately, this determined that the concentration gradient is the
ratio of the solubility of salt to the height of the column, which
is only true if the diffusion coefficient is independent of con-
centration (Tyrell, 1964). Through his dedication and constant
pursuit of scientific evidence, he was able to demonstrate that
his results confirmed his second law.

In the same way that Fourier’s and Ohm’s laws are well used
today, Fick’s laws have been proven prevalent and useful in
many years following their discovery. For instance, the rates
of biodegradation of various hydrocarbons can be estimated
from oxygen and carbon dioxide profiles, which is important
in the field of bioremediation (van de Steene and Verplancke,
2006). The respiration rates of these gases can be calculated us-
ing Fick’s laws, giving a description of gas diffusion processes
in soil (van de Steene and Verplancke, 2006). In addition, Fick’s
laws may be modified in order to provide more accurate pro-
duction rates of certain gases by adding a correction term for
advective flux (van de Steene and Verplancke, 2006).

Fick made great contributions to the fields of medical physi-
ology and physical science, both of which are incredibly valu-
able and still widely used today. Fick’s laws of diffusion con-
tinue to be relevant today, as they have provided many scien-
tists and engineers with laws that can be modified or adjusted
to suit their specific applications. In addition, his findings have
proven to be valuable not only in science, but they also have had
impact on policies related to the health of people worldwide.
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7 James Clerk Maxwell
(1831-1879)

The Man Who Changed Everything

By Margaret Jasek, Allissa Bartlett, Morgen Menig-
McDonald, and Katelyn Sysiuk

James Clerk Maxwell’s most well-known achievement was
to formulate the classical theory of electromagnetic radiation,
merging for the first time theories of electricity, magnetism,
and light as different manifestations of the same phenomenon.
Maxwell’s equations for electromagnetism are dubbed as the
“second great unification in physics” after the first one cred-
ited to Isaac Newton. In this essay, however, we delve into
Maxwell’s work on mechanics, the study of motion of bodies,
as he applied it to very large and very minuscule scales.

7.1 Early Life

James Clerk Maxwell was born in Edinburgh, Scotland, in 1831.
His father was John Clerk Maxwell and his mother was Frances
Clerk Maxwell. His father portrayed characteristics that were
more cautious but very considerate, while his mother was known
to radiate blunt determination. During his childhood, Maxwell
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showed many signs of intelligence early on. He was known to
constantly be asking questions. His cousin remembered him
often asking the question, “What does it do?” when seeing
something for the first time. His aunt remembered being em-
barrassed by not being able to answer so many questions asked
by a child. He was also known for laying in the grass, staring
at the sky and simply wondering, content with the company of
his thoughts (Campbell and Garnett, 1882).

When Maxwell was a bit older, he was not constantly asking
questions and simply observing anymore, but he was engaged
in doing and creating. This was when his inventiveness began
to show itself. One of Maxwell’s caregivers, Mrs. Murdoch,
gave him a tin plate to play with when he was only two and
a half years old. It was noted to be a sunny day and Maxwell
angled the plate to the sun and watched the reflection bounce
around the room. He called for his parents to show them what
he had discovered. They were delighted to see his curiosity
and brilliance from such a young age and his father told him
he would teach him about the moon and stars when he was
older. Mr. Maxwell enjoyed teaching his son; however, it was
not long until the roles were reversed (Campbell and Garnett,
1882).

Maxwell was taught by both of his parents until his mother’s
death in 1839. After her passing, his father tried to bring a
tutor to their home. This was determined to be unsuccessful
as Maxwell’s learning was slow and the tutor was discovered
to be rough and abusive with Maxwell. Even though Maxwell
was known to never complain and even assured his father that
everything was right, his aunt believed that he never overcame
the lasting effects of the abuse. His father decided that Maxwell
needed to be led, not driven, as he was getting to be more
adventurous on his own. Mr. Maxwell decided that putting him
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in school was the best option (Campbell and Garnett, 1882).

7.2 Education and Career

Maxwell attended Edinburgh Academy from 1841 to 1847. While
he attended this academy, he lived with his father’s sister, Is-
abella Wedderburn. He took an interest in Latin, Greek Delec-
tus, Scripture, Biography, and English. Despite being interested
in these subjects, he did not get along with his school mates.
They made fun of him and called him “Dafty” (dull). Even
though Maxwell’s father put Maxwell in this school because
he believed it was best for him, he somehow had a neglect
for Maxwell’s appearance. The clothing that Maxwell wore to
school was different than the other boys. His were comfort-
able and casual, unlike the other students. His clothes could
be described as “rags” and he was bullied by the other stu-
dents (Campbell and Garnett, 1882). Even though he was not
irritated by this, this poor clothing choice could have possibly
been swayed if his mother was still alive.

He spent most of his time alone wandering in nature and ad-
miring the wildlife. However, he eventually did gain some sup-
port through a professor who was impressed with Maxwell’s
work, Professor Forbes. Forbes even sent a letter to his father
stating, “I have looked over your son’s paper carefully, and I
think it [is] very ingenious” (Campbell and Garnett, 1882). Per-
haps it was this supportive relationship that provided Maxwell
with a mentor and helped him excel later on in life.

Maxwell simply completed his courses at school instead of
skipping ahead even though he had the potential to. It was con-
templated whether his inventions that he worked on outside of
school interfered with his academic success during this time.
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He missed the Mathematical Medal competition but proceeded
to do quite well upon graduation, coming first in Mathematics
and English. He also published his first paper in the Proceed-
ings of the Royal Society of Edinburgh at the age of fourteen.
Overall, he looked back on his school days affectionately. He
only wished that he was not so much misunderstood by so
many people (Campbell and Garnett, 1882).

In 1847, Maxwell entered the University of Edinburgh, where
he studied mathematics. He struggled with socially fitting into
this environment similarly to the Academy he attended. He
was known to not reply directly in conversations and to speak
in a monotone manner. However, university gave him more
freedom to explore his interests. He focused on polarized light,
galvanism, rolling curves, and the compression of solids during
his time at this institution. He published a paper during this
time on the equilibrium of elastic solids and the equations he
derived (Flood et al., 2014).

In 1850, Maxwell enrolled at Cambridge University where he
completed his bachelor’s degree and later became a fellow and
published his work, Experiments on colour as perceived by the eye
(Marston, 2016). In 1856, Maxwell applied to become the Chair
of Natural Philosophy at Marischal College. Even though he
was young for a professor at the age of 24, he was still ap-
pointed. In 1860, he applied for a Chair position at King’s
College, London, and was also successful. In 1865 Maxwell
resigned so he could focus on experiments and theories (Flood
et al., 2014).
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7.3 Rings of Saturn

The subject of the Adam’s Prize in 1855 was the stability of Sat-
urn’s rings. This was a very mysterious subject, upon which
many questions revolved. Astronomers had been struggling to
explain this phenomenon for the previous 200 years before this
competition. This problem was proven to be extremely diffi-
cult and submissions had to be in by December 1857. Just to
highlight Maxwell’s brilliance, although Pierre Simon Laplace
was a famous mathematical astronomer he was unable to make
any significant progress with this quest. He was able to show
that the rings could be unstable but failed to explain how they
are stable. Maxwell took a different approach and started at
the centre of Saturn. He utilized two methods that already ex-
isted but the brilliant part of his method was the sequence and
application in which he used them. For the first approach, he
formed equations of motion, including the gravitational poten-
tial due to the rings, from the centre of Saturn. However, this
resulted in one unrealistic scenario, in which the rings would
be stable. This scenario included that the rings were signifi-
cantly lopsided, which, as could be seen in telescopes, was not
the case (Mahon, 2004).

The second method he tried was the method of Fourier. He
analyzed the different types of waves that could occur. This
proved that fluid rings would break up and form separate masses.
By the process of elimination alongside his determination, he
showed that even though the rings appear to be continuous
they are not. Maxwell built a mathematical analysis of what
would happen if the rings were made up of equally spaced
particles. He was able to prove that some arrangements of the
rings would be stable and recognized that there would be colli-
sions between the particles. He learnt the mathematics he used
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in solving this question at University of Edinburgh and Cam-
bridge University. Out of all the famous mathematicians and
astronomers, Maxwell was the only one to complete this quest
and submit his entry. He won the Adam’s Prize (Mahon, 2004).

Instead of letting this victory take him down, as there was
no other competition, Maxwell saw even more value in this
win. This success helped Maxwell to build a reputation and
a name for himself, and for the schools he attended during
his education. He was happy with this win but even prouder
that he could give back to the educational system that provided
him with so much. The Voyager missions in the 1980s backed
up Maxwell’s theory, as particles theorized in the theory by
Maxwell were proven to be made of ice and rock material (Ma-
hon, 2004).

7.4 Maxwell’s Kinetic Theory

Among Maxwell’s major contributions, Maxwell built upon the
work completed by Rudolf Julius Emanuel Clausius regarding
kinetic theory. Clausius developed two assumptions that were
essential to Maxwell’s work, the first being that molecules were
not necessarily elastic spheres and the second regarding the
angle of reflection when particles collide. However, Clausius
was unable to determine the mean free path of a molecule and
therefore unable to determine its size. This is what Maxwell
focused on. He studied intermolecular collisions and his work
was much more complete and comprehensive than Clausius’.
He used statistics and physics, and collaborated with Ludwig
Boltzmann. Maxwell was able to manipulate probabilistic meth-
ods as he was familiar with them from his philosophy courses
at the University of Edinburgh. His mentor and friend, Forbes,
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also used similar methods. Maxwell was able to complete this
work because of his education and the great relationship he de-
veloped with Forbes. He also used this knowledge and built
upon it when working on the question regarding the rings of
Saturn. He completed his work on the rings of Saturn before
working on kinetic theory, which gave him the experience and
knowledge with the motion of particles that he required (Flood
et al., 2014).

During his education, he was always trying to build and cre-
ate experiments, which was said to be the reason why he did
not reach his full potential. It was no surprise that he often
turned to this approach in his later years. In 1856, he had fin-
ished a paper that contained an expression for the mean free
path and a sketch of viscosity. This later led him to connect
molecular motions to transport properties of gases. In order
to measure the coefficient for the viscosity of air, he used an
experiment. This experiment used a pendulum that was made
of three horizontal glass discs clamped perpendicularly to a
vertical wire. The discs rotated under various pressures and
temperatures. He performed his experiment at his home so in
order to increase the temperature, he had to heat his house.
The contraption was protected from wind currents by using a
wooden box. This experiment was performed out of curiosity.
Maxwell stipulated that viscosity did not rely on the pressure
of the gas, and he was proven to be correct. The results of this
experiment were essential to support his further work on the
kinetic theory (Flood et al., 2014).

Maxwell’s work on his kinetic theory was extremely impor-
tant to the development of molecular physics. His work on
this topic has shown his ability to produce theories of the out-
most importance and to close significant gaps that existed in
the knowledge of molecular physics. A successor to Maxwell
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at King’s College stated, “There is scarcely a single topic that
he touched upon that he did not change almost beyond recog-
nition” (Marston, 2016). His ability to do so was due to the
knowledge and support he gained from his mentor, Forbes,
and his excellent education. Maxwell’s childhood and educa-
tion shaped him so that he could change society’s perception
of reality. He was able to create foundations that were essential
for the scientific and technological advances that proceeded. He
ignited a scientific revolution!
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8 Robert Hutchings Goddard
(1882-1945)

Father of the Space Age

By Shauna Armstrong, Laura Bender, Hannah May,
Elli Shanen, and Alana Valle

In reflecting on the motivation for his career, Robert Hutch-
ings Goddard once said, “if a way to navigate space were to
be discovered—or invented—it would be the result of knowl-
edge of physics and mathematics ... I resolved forthwith that I
would ... shine in those subjects” (Linn, 2014). Alas, this was
exactly what Goddard did. Using only the basics of mathemat-
ics and physics, Robert Goddard’s research on liquid-fuelled
rockets became undeniably essential for the fundamentals of
space travel and will continue to influence modern rocketry for
generations to come.

8.1 Dreams of Space

Robert Hutchings Goddard was born in Worcester, Massachusetts,
on October 5, 1882, to parents Nahum Danford Goddard and
Fannie Louise Goddard. He had a brother who was born in
1894 and died that same year. Robert H. Goddard’s lineage
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traces back to William Goddard who arrived in Massachusetts
in 1665 from England. In 1924, Goddard married Esther Chris-
tine Kisk and they never had children together.

Robert H. Goddard’s dream of space travel began in his early
life. As a child, Goddard was often homebound due to illness,
taking prolonged leaves from school. During this period, God-
dard spent much of his time reading about astronomy, mechan-
ics, physics, mathematics, the atmosphere, electricity, and sci-
ence fiction. Some of his favourite pieces included H. G. Well’s
War of the World and Jules Verne’s From the Earth to the Moon.
These books sparked creativity within Goddard and set him
on a path of determination to convert fiction into reality. This
notion was further instilled in Goddard at the age of seven-
teen, while pruning the branches of a cherry tree in his family’s
backyard. As he cut away the dead limbs, he imagined how
wonderful it would be to create a vehicle that could travel to
Mars. When Goddard descended from the tree, he realized the
purpose of his existence (Hunley, 1995). In the years following,
Goddard visited this tree on the anniversary of his epiphany to
commemorate this important turning point in his life.

After Goddard’s health improved, he returned to school to
pursue his education. He graduated from South High School
in Worcester in 1904 at age 22 as valedictorian of his class. His
address ended with the phrase “it has often proven true that
the dream of yesterday is the hope for today and the reality
of tomorrow”, which he continued to prove true through the
course of his lifetime for his advancements in rocketry.
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8.2 Out of this World Ideas

In order to make Goddard’s dream of space navigation a reality,
the right foundation was required. Goddard attended Worces-
ter Polytechnic Institute in Massachusetts, where he pursued
an undergraduate degree in physics. Graduating in 1908, he re-
mained at the institute the following year as a lecturer (Pendray,
1945). His studies later continued at Clarke University where
he obtained his master’s degree and Ph.D. in physics from 1911
until 1912 (Pendray, 1945). Goddard became a full professor
of physics the year following and continued this position with
the university until 1943, becoming head of both the physics
and math departments during this time (Linn, 2014). Although
largely based in academics, his career was not entirely spent at
the institution; Goddard took many leaves of absence through-
out his time to pursue his own research.

While at Clarke, Goddard’s doctoral research expanded be-
yond space travel as he produced his dissertation titled On the
Conduction of Electricity at Contacts of Dissimilar Solids in 1911
(Linn, 2014). However, his interest in rocketry was never forgot-
ten and during a brief research fellowship at Princeton Univer-
sity in 1912, he formed the foundational computations and con-
cepts on the practicality of rocket power by liquid fuels (Pen-
dray, 1945). However, Goddard’s research was interrupted as
he ran into a significant health scare in March of 1914 (Linn,
2014). Diagnosed with tuberculosis in both lungs, Goddard
was expected to die by the spring and returned to Worcester.
However, Goddard survived and began a slow recovery pro-
cess. It is unclear what effect this near-death experience had
on Goddard and his dream of space travel, but accounts from
physicians claim that they had never seen a man with such de-
termination to live (Linn, 2014). This perseverance was likely
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fuelled by his determination to succeed in rocketry and with a
miraculous recovery Goddard returned to his work with a drive
greater than ever.

Returning to Clarke in 1914, Goddard’s experiments were at
the expense of his own resources and salary (Pendray, 1945).
Aware of his limited funds, Goddard wrote to the Smithsonian
Institute and requested $5,000 for research on the pursuit of
reaching higher altitudes with weather balloons and refrained
from disclosing his true goal of rocket propulsion to the moon.
Unaware that the investment would lead to massive advance-
ments for science and mankind, the Smithsonian provided this
initial funding and was a continued supporter of Goddard’s
further rocketry research (Pendray, 1945).

Conceived in 1909 and patented in 1914, the main princi-
ples of Goddard’s liquid-fuelled rocket design consisted of a
multi-stage rocket with separate fuel and oxygen tanks, a high-
pressure combustion chamber, and a high velocity exit nozzle.
On March 16, 1926, after five years of development, Goddard
launched the first liquid-fuelled rocket ever constructed (Pen-
dray, 1945). In Auburn, Massachusetts, on his aunt’s farm, the
15-feet tall rocket travelled 41 ft up into the air and 184 ft later-
ally until returning to earth in just three seconds. This was the
first of many experimental rocket launches, which had increas-
ing success until 1926, when Goddard was ordered to relocate
by the fire marshal.

Word of Goddard’s work extended beyond the academic sphere
and individuals in aviation and military disciplines became in-
terested. In 1929 Colonel Charles A. Lindbergh became God-
dard’s confident and his link to Daniel Guggenheim and the
Florence Guggenheim Foundation (Pendray, 1945). The foun-
dation provided $50,000 in funding for Goddard that lead to
a new laboratory location in Mescalro Ranch, New Mexico,
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which provided ideal conditions for experimental work and for
Goddard’s respiratory requirements.

Goddard’s research was not widely shared in literature and
most of his findings were published in only two papers, A
Method of Reaching Extreme Altitudes in 1919 and Liquid-Propellant
Rocket Development in 1936. The former of the two explored a
mathematical demonstration to show possibilities of powder or
“dry fuel” rockets and included a theoretical multi-stage ap-
proach for a solid propellant rocket to reach the moon (Winter,
2016). It also included the first published proof that a rocket
could work in a vacuum (Linn, 2014). The second piece was de-
veloped after extensive experimentation in New Mexico, doc-
umenting his historical first flight (Winter, 2016). Goddard’s
research was more than a product of his time and space, but
it was fuelled by a deep driven passion and dream for space
travel. Although his true goal was to reach the moon, he was
not blind to social context and also applied his research to mil-
itary applications.

8.3 Rockets to Weapons

Upon the outbreak of World War I (WWI), Goddard set his
work regarding liquid-fuelled rockets aside to focus on weaponry.
At this time, he tried to interest the army in using rockets to
launch projectiles from ships rather than guns, but he was shut
down by the Navy who thought development and accuracy
would take too long. Instead, his main contribution at this time
became the design of the hand-carried, tube-launched rocket,
later to become the bazooka. Following the end of the war,
he returned to his research in larger scale rocketry in the 1930s,
and received many questions from German scientists. Goddard
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was suspicious of what the Nazis would pursue with rocketry,
especially with the prospect of war on the rise. He became
involved in the military once again, at the outbreak of World
War II (WWII), advancing military technology by introducing
the design of the jet-powered take off and rocket propulsion for
aircraft.

Goddard remained very secretive throughout his career, which
was largely attributed to his fear what others would develop
from his published work. This fear came to life as World War II
was coming close to an end. Goddard was able to inspect one of
the German V-2 rockets that was captured and claimed that his
designs were copied using information from his patents. The
captured V-2 rocket contained all the elements of Goddard’s de-
sign including the arrangement inside the shell (Winter, 2016).
Although Goddard remained secretive for legitimate reasons, it
is speculated that this personality trait may have hindered his
success in the further development of rockets in his lifetime.

8.4 Hindered by Secrecy

Although Goddard’s research played a huge role in the de-
velopment of rocket technology and innovation in the mili-
tary, there was significant controversy surrounding his work
throughout his lifetime and to this day. Many attribute this con-
troversy to his reserved nature and ‘loner’ personality. When
interacting with the press and in his publications, Goddard of-
ten provided little technical details and specifics of his results
(Linn, 2014). This led to a significant mistrust in the legitimacy
of his work and may have hindered the actual production of
the many patents and ideas he possessed. Goddard’s mistrust
extended even to his closest colleagues. To protect his work,
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he enforced that all his employed assistants in his rocketry re-
search sign oaths to refrain from speaking of his work outside
the laboratory (Winter, 2016).

Goddard had good reasons for hiding his work, as he was
consistently weighed down by the gravity of the press. For
example, a New York Times editorial feature released in 1920
dismissed Goddard’s theory that a rocket could function in a
vacuum. It stated that Goddard “did not know the relation of
action to reaction, and of the need to have something better
than a vacuum against which to react—to say that would be
absurd. Of course he only seems to lack the knowledge ladled
out in daily high schools”. For Goddard, it was easiest to keep
his work a secret and avoid ridicule.

Many questioned the actual importance of Goddard’s work
in influencing the trajectory of modern rocketry beyond an in-
spirational influence, as his successes were tied solely to purely
mathematical demonstrations of how a multi-stage propellant
rocket could reach the moon (Winter, 2016). Goddard never ac-
tually informed the press of his successful first liquid-propellant
rocket flight, having kept this secret from the press for almost a
decade. It was only briefly mentioned in his publication Liquid-
Propellant Rocket Development, which included no actual engi-
neering details (Winter, 2016). In this paper, he failed to address
the problems he encountered at various steps of his work, and
the engineering process he followed. This limited the paper’s
usefulness for others in the future to develop similar rockets
(Hunley, 1995). Although this protected his work, it was one ex-
ample of how he failed to allow others to learn from his work in
future rocketry development. Others also attribute Goddard’s
failure to achieve his goal of launching rockets to truly high
altitudes to his mystical belief in success of his rockets from
the day of the cherry tree, and his scientific character hindered
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by philosophical ignorance (Hunley, 1995). His engineering
methodology was centred around the belief that the universe
would repeat previous configurations over many trials and that
“logic is only the art of going wrong with confidence” (Hun-
ley, 1995). This led many to believe that he lacked the scientific
knowledge to perform legitimate experiments. While individu-
als throughout time claim he was too secretive or philosophical
to achieve advancements in modern rocketry, it is undeniable
that Goddard developed theories and patents used in rockets
today.

8.5 Awards and Legacy

Goddard passed away on August 10, 1945, plagued by throat
cancer. Following Goddard’s death, his wife Esther contin-
ued to champion and support his lifetime of work, continuing
his research in hopes of advancing the quest for space travel
(Pobuda, 1969). In addition to conducting interviews for ar-
ticles and biographies, Esther acquired the role of patenting
Goddard’s ideas and rocket components (Pobuda, 1969). God-
dard had been officially credited with 214 patents pertaining to
rocketry, of which 131 were filed by Esther following Goddard’s
demise.

On May 1, 1959, NASA established the Goddard Space Flight
Center in Greenbelt, Maryland, its first space research labora-
tory (Winter, 2016). The formal dedication was held on March
16, 1961, exactly 35 years after the launch of Goddard’s first
liquid-fuelled rocket. Ten years following the creation of the
laboratory, NASA published the history of the facility, titled
Venture Into Space – Early Years of the Goddard Space Flight Centre
(Winter, 2016). In this official document, Goddard is described
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as the “Father of American Rocketry” (Winter, 2016). In July
1969, NASA launched the Apollo 11 mission, using many of
Goddard’s principles and ideas to land the first two humans on
the Earth’s moon.

During his lifetime, Dr. Robert H. Goddard and his contri-
butions to space science and engineering received recognition
and many distinctions by respected scientific organizations and
establishments. The appendix of the published document The
Papers of Robert H. Goddard lists 52 awards, exhibits, and memo-
rials awarded to Goddard after his death (Winter, 2016). Many
of these recognitions were bestowed during the early U. S. space
programs and the Space Race with Russia (Winter, 2016). A few
months prior to his death, Goddard had been elected to the
Board of Directors of the American Rocket Society, a society of
which Goddard had been a member of for many years (Pen-
dray, 1945). In 1959, the 86th Congress issued a gold medal in
honour to Goddard. Goddard was also a posthumous recipient
of the Langley Gold Medal in 1960, a medal awarded to individ-
uals that pursued meritorious investigations into aerodynamics
and aviation. Goddard was bestowed upon with the Daniel
Guggenheim Medal in 1962, a medal awarded to individuals
who have made notable contributions in the aeronautics field.
Other notable commemorations include the Robert H. Goddard
Memorial exhibit at the American Museum of Natural History
in 1948 and the issuance of an airmail stamp featuring Goddard
and the Atlas rocket by the United States Government (Atwood,
1948; Wolfe, 1964).

Goddard’s lifetime of work dedicated to the development of
rocketry earned him many titles including the “Father of Rock-
etry,” the “Father of American Rocketry,” and the “Father of the
Space Age” (Winter, 2016). Some pieces of literature such as The
Enigma of Robert H. Goddard attempt to invalidate these claims
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and Goddard’s impact on modern rocketry (Hunley, 1995). Al-
though some claims may rise from evidence, in examining his
career and lifetime achievements, Goddard’s contributions, in-
ventions, and ideas pertaining to the science and engineering
of liquid-propelled rocketry are irrefutable.
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9 Nikolai Albertovich Fuchs
(1895-1982)

Days That Made A Life

By Charlotte Stoesser, Jasmine Biasi, Keegan Cleghorn,
Zofia Holland, and Stephan Iskander

“The life of a man can change radically in a day” was a phrase
spoken by Nikolai Albertovich Fuchs. While Fuchs said these
words in reflection of the day he met his beloved wife, Marina,
he had yet to unearth how true they would be proven in aspects
of his life to come. The day he met Marina, the day he met
conviction, and the day he met freedom, were all pinpoints in
the life of Nikolai Albertovich Fuchs. His story was long and
enduring and yet it was shaped profoundly by these specific
days that would mark the course for the remainder of his life
as a husband, father, and forefather of aerosol science.

9.1 The Day He Met Marina

It was December of 1935 on the day he met Marina Guseva.
Nearly 40, this day would be the mark in time that would lead
Fuchs away from his worries of a life alone. Fuchs’ life be-
fore Marina arrived in it was a decent one. Born July 31, 1895
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in Lantvarovo, Lithuania, while his family vacationed for the
summer away from their Moscow home, Fuchs arrived as the
fourth son, and would later be followed by a sister. The family
was musical; Fuchs in particular excelled at the violin and it
quickly became the first of his life’s passions (Spurny and Mar-
ijnissen, 1998). A natural talent for the instrument led him to
continue the practice and he would later play in the orchestra
throughout his university and early career time. The dedica-
tion required of such a skill is one that undoubtedly instills
patience. It can be said that this perhaps was the foundation
for the patience Fuchs carried through his work and life later
on. In 1917 Fuchs graduated from the Moscow Commercial
Institute and shortly after took position as an instructor at the
Moscow Institute of Chemical Engineering. This first academic
position was followed by a position at Timiryazev Agricultural
Academy where his interest in research was ignited. In 1932,
Fuchs was invited to organize an aerosol laboratory at the Kar-
pov Institute of Physical Chemistry in Moscow which would
mark the beginning of his life’s work in the field. At this time
in his life, an admired friend began to regard Fuchs as Sandy,
and from then on Sandy he was called by family and friends
(Spurny and Marijnissen, 1998).

In the time after meeting Marina Guseva at Dom Uschenykh,
a club for scientists, Sandy’s routines made room for her. The
nature walks he previously enjoyed on his own now included
her. Both lovers of nature, the two would scour woods and
fields growing Sandy’s herbarium with new flowers they would
discover. They would frequently dance on Saturday nights par-
taking in the Boston Waltz among others and often they would
practice their English together. It was only but five months be-
fore they married on April 22, 1936.

In the year following their marriage, Marina and Sandy strug-

74



9 Nikolai Albertovich Fuchs (1895-1982)

gled to find a place to live together. Moscow at the time was
a difficult place to find stay as living situations were most of-
ten in a shared state where families lived in single rooms using
furniture to partition personal spaces. It wasn’t until January
1937 that Marina and Sandy moved from their respective sofas
partitioned behind bookshelves in their family homes to a small
room of their own, and in good time as two weeks later they
celebrated the birth of their son Michael, whom they called af-
ter scientist Michael Faraday (Spurny and Marijnissen, 1998).
This was a time of bliss for the newlywed couple, the profound
joy they both held in their new son and the success of Sandy’s
work in the aerosol laboratory left them content and excited in
their lives (Spurny and Marijnissen, 1998).

9.2 The Day He Met Conviction

It was the April 22, 1937 on the day Sandy met conviction im-
parted by Stalin’s government. Exactly one year from the day
of his marriage and two days from receiving his doctorate de-
gree, an officer arrived at the Fuchs home, arrested Sandy and
searched the home. Calm as always, Sandy reassured his bride
not to worry over the mistake and that he would be back soon,
unbeknownst to him that it would be eight and a half years
until he returned (Spurny and Marijnissen, 1998). Sandy had
fallen victim of denouncement by a technician in his laboratory
who had chosen to denounce several people at the time, includ-
ing her own parents. No criminal nor political charges were laid
on him but still he was sentenced to five years in prison under
charges regarding “counter-revolutionary agitation” based on a
habit of reciting “counter-revolutionary” poems. It was a com-
mon thing of the time to suffer this repression, as any talk sensi-
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tive to the government could lead to prosecution, but regardless
of this, the shock of Sandy’s sentencing left him fainting for the
first time in his life (Spurny and Marijnissen, 1998).

The behaviour of Sandy in his time as a prisoner is a high-
light of the most outstanding aspects of his character. He was a
man of patience, a man of perspective and a man of composure.
Sandy spent months after his sentencing travelling to the pris-
oner reform camp under treacherous conditions. The journey
was a trying one, where convicts were not separated based on
criminal or political crimes and gang formations left the latter
group at a great vulnerability. Travelling by foot and by rail car
with little air and no food, many convicts did not even complete
the journey to the camp. The reflections Sandy had of this time
were all formed in optimism giving testament to the grand per-
spective he took on life. Sandy considered himself lucky over
the fact that he had been sentenced after meeting his wife and
having his son (Spurny and Marijnissen, 1998). Sandy consid-
ered himself lucky to have been sentenced before the World
War II (WWII) broke out as he would have likely received a
longer sentence with more brutal abuse (Spurny and Marijnis-
sen, 1998). In addition, this time in Sandy’s life highlighted his
composure. Here, a man who was completely innocent was on
a journey with some of the most formidable men imaginable,
circumstances as such are likely to evoke withdrawal or rage or
frustration and yet Sandy continued forward facing whatever
was ahead of him graciously. Under attack one night, Sandy
fought off two criminals out to steal his shoes and trousers, the
composure he showed under the attack earned him an alliance
with a gang that offered him protection until his arrival at camp
(Spurny and Marijnissen, 1998).

Two weeks after his arrival at camp, Sandy was summoned
to return to Moscow, not as a free man but as a specialized con-
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vict in a branch of science and engineering. Still in prison, he
was among a group of selected criminals who were of use to re-
search teams. Knowledge of Sandy’s work to date earned him a
spot working in a special chemical laboratory. Here Sandy was
given better treatment, with his living conditions including reg-
ular meals. All the while during this time, the only knowledge
Marina knew of her husband’s arrest was from a postcard that
detailed his sentencing and relocation plan to camp. Sandy’s
arrival back in Moscow was not shared with Marina for a year,
until the winter of 1938 (Spurny, 1998). Marina, brought in for
questioning regarding her husband, patiently appeased the au-
thorities for two days when finally they disclosed to her that
her husband in fact had been returned to Moscow. It was not
for some months longer that Marina was invited to finally see
her husband once again and be allowed to visit him at Butyrka
prison where he was being held.

9.3 The Day He Met Freedom

Five years came and went but the turn of World War II pre-
vented any release of prisoners during wartime (Spurny and
Marijnissen, 1998). Sandy was transferred to Siberia in this
time but the conditions in prison were often considered more
favourable than those outside of it, with consistent food and
shelter, Sandy was often in better state than his family in Moscow
(Spurny and Marijnissen, 1998). It wasn’t until after the war,
three and a half years past his initial sentence, that talk of re-
leasing prisoners began to stir. In October 1945, Sandy was re-
leased from prison and the next radical change of his life could
begin.

The remainder of Sandy’s life was dedicated to two things:
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his family and his contributions to aerosol science. Following
his release, Sandy began work as head of a physical labora-
tory outside of Moscow as he was not allowed to be registered
in the city. The flat he rented near work was more of an al-
ibi than a home as he still secretly lived with his family in
Moscow. Despite the pay and the long commute, Sandy was
happy and could again delve into his research. Then, in late
1946 Sandy was able to return, officially, to Moscow and it was
at this time he finally was able to defend his doctorate degree
that he had been so close to receiving years ago. The good
luck did have some struggles, though, as Sandy’s criminal past
haunted him from March to September 1949 wherein he was
fired from his laboratory and struggled to find work even as
a factory worker. Once again, the patience of Sandy prevailed
and he left Moscow, exiled, but optimistic for another way. For
years he worked on his aerosols book away from Moscow until
the death of Stalin lead to his amnesty in 1953 when he could
return as a record-free man (Spurny and Marijnissen, 1998).
Back in Moscow, his professional accomplishments began to
be fruitful and continued in such a manner for the remainder
of his life. In 1956 Sandy published his first book Mechanics of
Aerosols that was one of the first publications in the study of
the motion and precipitation of aerosol particles. In 1958 Sandy
was officially “rehabilitated” by the government and invited
back to the Karpov Institute of Physical Chemistry, his place of
employment prior to his arrest in 1937. In 1959 Sandy became
head of the Aerosol Laboratory at the very institute. It was in
this same year that he published his second book Advances in
the Mechanics of Aerosols. Despite his personal hardships and
being alienated from works he had been a part of prior to his
imprisonment, such as the Petryanov filters, Sandy’s patience,
perspective, and composure once again led him through and
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realized his passion in the field (Ensor, 2011).
Marina translated all of Sandy’s works, and they grew their

herbarium collection, watched their son follow a career in chem-
istry and adopted cats. In 1977 Sandy retired to pursue his
dream of publishing a collection of materials for the field of
aerosol science. It was his passion to grow the field as its own
field in science and better it for generations to come (Spurny
and Marijnissen, 1998). Sandy spent his final days working to
complete this goal and ultimately died happily on October 10,
1982 (Walton, 1983).

Nikolai Albertovich Fuchs was a man of patience and per-
spective that transcended not only into his life’s work in aerosol
science but also in the love of his many other passions: his
family, music, and nature. A life filled with unexpected cir-
cumstances that tried his character did not take anything away
from the man he was nor did it interfere with his determination
to shape the field of aerosol science.
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10 Josiah Willard Gibbs
(1839-1903)

The Mind Behind Mathematical Physics

By Michael Baldaro, Rosalee Calogero, Ye Eun Chai,
and Samuel Descrochers

Josiah Willard Gibbs, who believed “mathematics is a lan-
guage,” was an American scientist who contributed compre-
hensively in the field of physics, chemistry, and mathematics.
Unlike other scientists, he was not an experimenter but liked to
use logic and mathematics to interpret his findings and work to-
ward the most accurate methods to prove his discoveries. With
such approach, his performance led him to explore and fur-
ther develop theories in science that incorporated the usage of
mathematics to provide a perfect explanation. His endless pas-
sion towards mathematical physics and physical chemistry had
a great impact not only in the Roaring Twenties but also in the
present day.

10.1 A Portrait of Gibbs

Josiah Willard Gibbs was born in 1839, located in the city of
New Haven, Connecticut (Kumaran, 2007). Gibbs was named
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after his father, who overly became a successful Professor of
Sacred Literature at Yale Divinity School. Growing up, Gibbs
was born into a well-educated family and was able to advance
his studies at an early age. He received his undergraduate de-
gree from Yale University at the age of nineteen and presented
himself highly as he graduated at the top of his class at one
of the best universities in the United States at the time (Ku-
maran, 2007). In 1861, Gibbs then went on to become the first
recipient to receive a Ph.D. in engineering in the United States.
He carried out his doctoral research on brakes for railway cars
at the Sheffield Scientific School at Yale University, providing
him with a firm platform in applied mathematics (Kumaran,
2007). To enhance his profound knowledge of mathematics,
Gibbs travelled to Europe to interact and study with success-
ful German physicists Gustav Kirchoff and Hermann Helmholz
(Kumaran, 2007). These great physicists introduced and moti-
vated Gibbs to take further studies in the field of thermody-
namics. In 1869, Gibbs decided to return to Yale University
and followed his father’s path to become a Professor of math-
ematical physics in 1871 (Johnston, 1928). Gibbs’ educational
endeavours, without a doubt, served a platform of success and
knowledge in his years leading up to his major scientific suc-
cess.

During this era, Gibbs introduced his conceptual theory of
thermodynamics and published two of his first papers in 1873,
in the Transactions of the Connecticut Academy of Arts and Sci-
ences (Johnston, 1928). In his first paper, he developed graph-
ical methods on the interpretation of thermodynamic variables
and represented the state of a system in two dimensional dia-
grams. Engineers were very interested in his theory, as Gibbs
introduced a combination of pressure, volume, entropy, tem-
perature, and energy to view the state of a system in a two-
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dimensional diagram, whereas engineers had only used pressure-
volume representation (Kumaran, 2007). The second of his pa-
pers, introduced a geometric representation of the state of a
system in three dimensions, with the aid of entropy, volume,
and energy coordinates. These papers introduced new endeav-
ours in thermodynamics and motivated Gibbs to continue his
research to amuse society. Gibbs’ personal ambition led to a
historical contribution to society, as it had advanced scientific
principles of chemistry, which are still used to this day.

10.2 A Contrast in Scientific Style

Gibbs transformed the study of thermodynamics as it once was
known as the study of gases in heat and work cycles, but he
overly extended it to all substances of liquids, gases, and solids.
During the years from 1876 to 1878, Gibbs introduced his paper
On the Equilibrium of Heterogeneous Substance (Johnston, 1928).
This paper became Gibbs greatest influence on the develop-
ment of chemistry and thermodynamics. Gibbs free energy [per
mole] was formulated and became of importance in the funda-
mentals of chemical reactions and their potential. This devel-
oped the theory of chemical thermodynamics and the ethics of
his research. Gibbs’ free energy of a system can be written as

G(p, T) = U + pV − TS = H − TS, (10.1)

where p is pressure, T is temperature, U is internal energy, V
is volume, S is entropy, and H is enthalpy (equal to U + pV).
Gibbs’ free energy is a thermodynamic potential that enables
the calculation of maximum reversible work that may be per-
formed by a thermodynamic system at a constant temperature
and pressure.
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Additionally, Gibbs derived the “phase rule” in this research
piece. He defined the term phase, which was stated as the
“thermodynamic state” and composition of a body of solid, liq-
uid, or vapor, without relating to its quantity. In a phase, all
physical properties of a certain material would be considered
uniform. This would include properties such as the density,
hardness, chemical composition, and more, of the material. The
introduction of this topic lead to the derivation of the actual
phase rule, in which quantity is not being considered. Phases
are measured in variables such as temperature and pressure.
Through several assumptions and manipulations, the following
equation known as the phase rule was derived. The successful
formula can be given by

F = C− P + 2, (10.2)

where F is the number of degrees of freedom, C is the num-
ber of components and P is the number of phases in coexistent
equilibrium. Gibbs’ derivation of the phase rule has become a
useful tool not only in thermodynamics but also in the study of
material science. It provides useful information on the occur-
ring phase changes in a system.

Aside from thermodynamics, material science, and sciences
in general, Gibbs also played a significant role in the evolu-
tion of mathematics. He was even selected as the professor of
mathematical physics at Yale in 1871. Close to the end of the
19th century Gibbs worked together with other scientists and
mathematicians to develop vector notation, a notation in math-
ematics and science that is currently used in studies today. One
of these people that Gibbs worked with was Oliver Heaviside,
who according to Gibbs was one of the main contributors to the
development of this notation. Gibbs later contributed to a book
written by Edwin Bidwell Wilson called Vector Analysis which
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helped implement the notation into subjects such as linear al-
gebra and vector calculus (Gustafson and Wilcox, 1998). Now
vector notation is a widely used notation that has many appli-
cations in sciences, mathematics, and physics. Vector notation
can also be referred to as Gibbs notation.

One of Gibbs’ most important contributions to the world of
science and mathematics was his book Elementary Principles in
Statistical Mechanics, which is the foundation of modern statisti-
cal mechanics. In his book, Gibbs showed how the laws of ther-
modynamics would arise exactly from a generic classical me-
chanical system such as a projectile, planet, star, or galaxy. One
of Gibbs’ aims when writing the book was to simplify the thou-
sands of pages of results and findings obtained previously by
Clausius, Maxwell, and Boltzmann, governing the relation be-
tween thermodynamics and statistical mechanics. Gibbs book
simplified statistical mechanics to a mere 207 pages and was
able to fully generalize and expand statistical mechanics into
what many people know today. He demonstrated how statis-
tical mechanics could broaden the world of classical thermo-
dynamics to systems that encompass any number of degrees
of freedom. At the time when the book was written, the gen-
eral understanding of nature was proposed in classical terms
because quantum mechanics was not yet conceived. Even basic
facts such as the existence of atoms were still a topic of dis-
cussion amongst scientists (Cercignani, 1998). Gibbs assumed
the least about classical physics when writing his book, and his
findings have kept their accuracy over the years, despite the
turnaround of modern physics in the early 20th century.
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10.3 Impact on Society

Gibbs’ findings did not directly influence the Roaring Twenties;
however, his profound ability in using logic and developing
mathematical reasoning played a significant role in the Western
society and culture in the 1920s. As industries expanded dur-
ing the Roaring Twenties, his method of using specific proce-
dures to achieve the highest accuracy became important and al-
lowed for great establishments in technology. Gibbs derivation
of phase rule, the concept of entropy, and free energy were so
comprehensive and practical that it could be applied to count-
less problems, advancing technologies such as engines for auto-
mobiles that evolved throughout the Roaring Twenties (Koenig
and Swain, 1933). Not only that, such development in tech-
nology led to an overall economic growth from 1922 to 1929
in America (Harrison and Weber, 2009). In addition, his con-
tinuous endeavour to expand his scientific activities, his study
in biology, and physical chemistry of the human body led to
many research programs in medicine. As medicine was one of
the fields that advanced the most during the Roaring Twenties,
Gibbs potentially had contributed towards the development of
medicine by inspiring future generations.

Gibbs surely had an indirect impact on the Roaring Twen-
ties; however, it did not end there as he was being considered
as one of the greatest modern scientists to this day. This is
because his discoveries in thermodynamics and chemistry are
being taught to students and used in different fields of science
to this day. Also, his influence on other scientists is still be-
ing carried on today as some led to intelligent discoveries. For
example, Albert Einstein was influenced by Gibbs’ studies in
statistical mechanics allowing him to continue his studies aim-
ing to propose the second law of thermodynamics utilizing me-
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chanics and probability while Gibbs focused on presenting a
mathematical condition for statistical equilibrium (Inaba, 2015).
His impact directly on academia as well as various practical
applications is what kept Gibbs close to the world to this day.

10.4 Unnoticed but Timeless

Gibbs worked at a time when there was little ambition for se-
rious theoretical science in the United States. His research was
not easily understood by his students or his colleagues, and
he made no effort to popularize his ideas by advertising for
their exposure to the world. However, the work he had accom-
plished, whether it was easy to understand or not, was some
of the most influential scientific research of all time. So many
might wonder why a scientist of his importance is not known
by the average person. Gibbs was a quiet, bookish figure, with
no interest in self-promotion, who rarely socialized and never
married but was still very content with the life he lived. He
wrote in a complicated mathematician’s style that tended to
conceal the intellectual treasures his work contained. Gibbs de-
serves to be known, and his accomplishments recognized, as he
was described by many as “one of the great creative scientific
geniuses of all time.” However, Josiah Willard Gibbs was a sci-
entist that only other scientists would understand. He quietly
did what he did; what he did was very important; and then,
just as quietly as he changed the world of science and mathe-
matics, he disappeared. Unless you’re familiar with his field,
you would never hear his name; and maybe that is what he
intended. Gibbs was the scientist the world deserved but was
not a scientist very well recognized for his work. So, he will
continue to float under the radar. Because that is maybe what
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he wanted. He was the silent physicist, the diligent mathemati-
cian, the greatest scientific genius you might have never heard
of.
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Karagözoğlu, B. (2017). Contribution of Muslim Scholars to Sci-
ence and Technology. In: Science and Technology from Global and
Historical Perspectives. Cham: Springer.

Koenig, F. O. and R. C. Swain (1933). An Elementary Deduction
of Gibbs’ Adsorption Theorem. J. Chem. Phys. 1(10), 723–730.

Koiwa, M. (1998). Historical development of diffusion studies.
Metals and Materials 4(6), 1207–1212.

Kumaran, V. (2007). Josiah Willard Gibbs. Resonance 12(7), 4–11.

Leaman, O. (2006). The Biographical Encyclopedia of Islamic Phi-
losophy. London: Thoemmes Continuum.

Linn, M. (2014). Profiles in Science for Science Librarians:
Robert Goddard: Rocket Scientist. Science & Technology Li-
braries 33(2), 99–123.

Mahon, B. (2004). The Man Who Changed Everthing. England:
John Wiley & Sons, Inc.

Marquina, J. E., M. L. Marquina, V. Marquina, and J. J.
Hernández-Góme (2016). Leonhard Euler and the mechan-
ics of rigid bodies. Eur. J. Phys. 38(1), 015001.

Marston, P. L. (2016). James Clerk Maxwell: Life and science. J.
Quant. Spectrosc. Ra. 178, 50–65.

Mnyukh, Y. (2012). Ferromagnetic state and phase transitions.
Condens. Matter Phys. 2(5), 109–115.

92



Bibliography

Oliveira, A. R. E. (2016). Charles-Augustin Coulomb—The
Founder of Physiology and Ergonomics. Advances in Histori-
cal Studies 5(5), 207–222.

Ono, K. and A. D. Aczel (2016). My Search for Ramanujan.
Switzerland: Springer International Publishing.

Pendray, G. (1945). Robert H. Goddard. Science 102(2656), 521–
523.

Plotnitsky, A. (2016). The Principles of Quantum Theory, From
Planck’s Quanta to the Higgs Boson. Illinois: Springer.

Pobuda, R. (1969). A Tribute to Robert Hutchings Goddard.
Ann. NY. Acad. Sci. 163(1), 7–8.

Ramanujan, S. (1927). Collected Papers of Srinivasa Ramanujan.
Cambridge: Cambridge University Press.

Russel, C. A. (1996). Edward Franklin: Chemistry, Controversy
and Conspiracy in Victorian England. Cambridge: Cambridge
University Press.

Satija, I. I. (2016). Butterfly in the Quantum World—The story
of the most fascinating quantum fractal. California: Morgan &
Claypool Publishers.

Shapiro, E. (1972). Adolf fick—forgotten genius of cardiology.
Am. J. Cardiol. 30(6), 662–665.

Spurny, K. R. (1998). Advances in Aerosol Filtration. Schmallen-
berg: Lewis Publishers.

Spurny, K. R. and J. C. M. Marijnissen (Eds.) (1998). Nicolai
Albertowich Fuchs: The pioneer of aerosol science: biography. The
Netherlands: Delft University Press.

93



Bibliography

Thakur, R. (2004). Srinivasa Ramanujan: A Mathematical Genius.
New Delhi: Prabhat Prakashan.

Tyrell, H. J. V. (1964). The origin and present status of Fick’s
diffusion law. J. Chem. Educ. 41(7), 397.

van de Steene, J. and H. Verplancke (2006). Adjusted Fick’s
law for gas diffusion in soils contaminated with petroleum
hydrocarbons. Eur. J. Soil Sci. 57(2), 106–121.

van der Waerden, B. L. (2013). A History of Algebra: From al-
Khwarizmi to Emmy Noether. Berlin: Springer.

Vandam, L. D. and J. A. Fox (1998). Adolf Fick (1829-1901),
physiologist: a heritage for anesthesiology and critical care
medicine. Anesthesiology 88(2), 514–518.

Walton, M. H. (1983). Professor Nikolai Albertovich Fuchs. Ann.
Occup. Hyg. 27(2), 237–238.

Winter, F. H. (2016). Did the Germans learn from Goddard?
An examination of whether the rocketry of R.H. Goddard
influenced German Pre-World-War II missile development.
Acta Astronaut. 127, 514–525.

Wolfe, D. (1964). Robert H. Goddard. Science 146(3652), 1639.

94



Index

École du Génie at Mézières,
3

A Method of Reaching Ex-
treme Altitudes, 67

Abbasid dynasty, 30
abstract problems, 34
Académie des Sciences, 5
Adam’s Prize, 59
Adolf Eugen Fick, 47
Advances in the Mechanics

of Aerosols, 78
Aerosol Laboratory, 78
Al-jabr, 30, 31
Al-Ma’mun, 30, 37
Al-muqabala, 30, 31
Al-Qutrubbulli, 30
Al-Tabari, 30
Albert Einstein, 13, 20, 85
Alexander von Humboldt Foun-

dation, 17
Algebra, 30
algebra, 30
Algorithm, 35
algorithm, 34

algorithms, 30
Algoritmi, 35
Algoritmi de numero Indo-

rum, 30, 35
Alpha decay, 14
American Museum of Nat-

ural History, 71
American Rocket Society, 71
aneroid manometer, 50
Annie Heisenberg, 11
Apollo 11 mission, 71
arithmetic, 30
Arnold Sommerfeld, 11
Aryabhata, 35
Asymptotic Partition Formula,

26
Atlas rocket, 71
atom, 84
Auburn, 66

Babylonians, 34
Baghdad, 30
Basel, 39
Basel University, 39
bazooka, 67

95



Index

Berlin observatory, 44
Bernard Langenbeck, 48
Bernoulli, 39
bioremediation, 54
Blois, 8
Bohr Festival, 11
Boltzmann, 84
Boston Waltz, 74
Bouchain, 5
Boy Scouts of America, 11
Brest, 4
Bromwich’s Theory of Infi-

nite Series Test, 24
Bund Deutscher Neupfadfinder,

11
Butyrka prison, 77

Caliph, 30
Cambridge Philosophical So-

ciety, 27
Cambridge University, 58
Cambridge’s Sadleirian Chair,

24
cardiac output of the heart,

49
Carl F. W. Ludwig, 48
Carl Ludwig, 50, 52
Carr’s Synopsis of Pure Math-

ematics, 21
Charles Pierre Le Monnier,

2
Charles-Augustin de Coulomb,

1
Chatterjee2004, 15
chemical reactions, 82
chemical thermodynamics, 82
Chinnaswami, 19
Clarke University, 65
classical thermodynamics, 84
Claudius Ptolemy, 37
Clausius, 84
Collège Mazarin, 2
Collège Royal de France, 2
Colonel Charles A. Lindbergh,

66
compression of solids, 58
contact lens, 48
cornea, 50
Corps de Génie, 3
Corps du Génie, 8
Coulomb’s Law, 7
counter-revolutionary agita-

tion, 75
Curie-Wiess Model, 14

Daniel Bernoulli, 40
Daniel Guggenheim, 66
Daniel Guggenheim Medal,

71
Diwan Bahadur R. Ramachan-

dra Rao, 23
Dom Uschenykh, 74

Edinburgh, 55
Edinburgh Academy, 57

96



Index

Edwin Bidwell Wilson, 83
electromagnetic radiation, 55
elementary particles, 17
Elementary Principles in Sta-

tistical Mechanics,
84

Emilie von Coelln, 47
energy, 81
entropy, 81
equilibrium of elastic solids,

58
Erode, 18
Esther Christine Kisk, 64
Euler equations, 42
Euler formula, 42
Euler Identity, 43
Experiments on colour as per-

ceived by the eye,
58

Fannie Louise Goddard, 63
father of Algebra, 37
father of algebra, 30
Father of American Rocketry,

71
Father of Rocketry, 71
Father of the Space Age, 71
Fibonacci, 34
Fick’s First Law of Diffusion,

53
Fick’s Laws of Diffusion, 52
Fick’s Principle, 49

Fick’s Second Law of Diffu-
sion, 53

Florence Guggenheim Foun-
dation, 66

Fort Bourbon, 4
Fourier, 59
Fourier’s Law of Conduction,

53
Frances Clerk Maxwell, 55
free energy, 85
From the Earth to the Moon,

64

G. H. Hardy, 24
Göttingen, 11
galvanism, 58
geography, 30
geometric algebra, 34
Georg-August-Universitat Göt-

tingen, 11
Gibbs free energy, 82
Gibbs notation, 84
Goddard Space Flight Cen-

ter, 70
Golden Age, 35, 36
Government College, 23
Grand Cross, 17
Greco-Roman scholar, 37
Greek mathematics, 31
Greeks, 34
Greenbelt, 70
Gustav Kirchoff, 81

97



Index

H. F. Baker, 24
H. G. Well, 64
Hamiltonian Mechanics, 15
Heinrich Himmler, 15
hemodynamics, 49
herbarium collection, 79
Hermann Helmholz, 81
Hermann von Helmholtz, 50
Highly Composite Numbers,

26
Hindu-Arabic numerals, 30,

35
House of Wisdom, 30

Imbert-Fick law, 50
Indian Mathematical Society,

22
Industrial Age, 48
International Institute of Atomic

Physics at Geneva,
17

intra-ocular pressure, 50
Inverse Square Law, 7
Isaac Newton, 55
Isabella Wedderburn, 57
isometric, 50
isotonic, 50

James Clerk Maxwell, 55
James Planck, 11
Janakiammal, 22
Jew Physics, 15
Johann Bernoulli, 39, 44

Johannes Schonlein, 48
Johannes Wislicenus, 50
John Clerk Maxwell, 55
John Edensor Littlewood, 25
Josiah Willard Gibbs, 80
Jules Verne, 64
Justus Liebeg, 51

K. Srinivasa Iyengar, 19
Kangayan Primary School,

20
Karpov Institute of Physical

Chemistry, 74
Kaspar Ernst August Heisen-

berg, 10
Kassel, 47
Khawarizmi, 30
King’s College, 58
Kitab Surat Al-Ard, 37
Komalathammal, 19
Kumbakonam, 19
Kumbakonam winning, 21
Kuppuswami, 20

Lakshmi Narasimhan, 19
Langley Gold Medal, 71
Langrange, 44
Lantvarovo, 74
lattice multiplication method,

33
law of conservation of mass,

49
Laws of Diffusion, 47

98



Index

Leipzig, 16
Leonardo of Pisa, 34
Leonhard Euler, 21, 39
Liber Algebræ et Almucabola,

30
Liebeg’s theory, 51
linear algebra, 84
liquid-fuelled rocket, 66
Liquid-Propellant Rocket De-

velopment, 67
little lord, 19
London Mathematical Soci-

ety, 24
Loney’s Trigonometry, 20
Louis XV, 4
Louise Françoise LeProust Des-

ormeaux, 8
Ludwig Boltzmann, 60
Ludwig-Maximilians-Universitat

München, 11

Madras Port of Trust, 23
Marina Guseva, 73
Marischal College, 58
Marquis de Montalembert,

6
Martinique, 4
Massachusetts, 65
mathematical physics, 80, 81
Matriculation Examination,

21
matrix mechanics, 13

Max Born, 11
Maxwell, 84
mean free path, 60
mechanics, 85
Mechanics of Aerosols, 78
Medizinische Physik, 49
Mescalro Ranch, 66
Micaiah John Muller Hill, 23
Michael Faraday, 75
Montpellier, 3
Moscow, 74
Moscow Commercial Insti-

tute, 74
Moscow Institute of Chemi-

cal Engineering, 74
Mount Faulhorn, 51
Mr. Griffith, 23
Mrs. Murdoch, 56
Muhammad ibn Musa Al-

Khwarizmi, 29
musculo-skeletal system, 49

Nahum Danford Goddard,
63

Namagiri, 19, 21
NASA, 70
natural logarithm, 42
Nazi, 15
Nazis, 68
Neils Bohr, 12
New Haven, 80
New York Times, 69

99



Index

Newtonian mechanics, 2
Nicolaus Bernoulli, 40
Niels Bohr, 11
Nikolai Albertovich Fuchs,

73
nuclear fission, 15

Ohm’s Law, 53
Oliver Heaviside, 83
On the Conduction of Elec-

tricity at Contacts
of Dissimilar Solids,
65

On the Equilibrium of Het-
erogeneous Substance,
82

Order of Merit of Bavaria,
17

Otto von Bismarck, 48

P. V. Seshu Aiyar, 22
Pachaiyappa’s College, 22
Percy Alexander MacMahon,

26
Petryanov filters, 78
phase rule, 83
physiology of muscles, 50
Pierre Simon Laplace, 59
plasma physics, 17
pneumograph, 50
polarized light, 58
pressure, 81
Princeton University, 65

probability, 86
Proceedings of the London

Mathematical Soci-
ety, 26

Proceedings of the Royal So-
ciety of Edinburgh,
58

Professor Forbes, 57

quantum mechanics, 84
Qutrubull, 30

Roaring Twenties, 80, 85
Robert Hutchings Goddard,

63
Rochefort, 6
rolling curves, 58
Royal Fountains, 8
Royal Society, 24
Royal Society of London, 27
Rudolf Julius Emanuel Clau-

sius, 60
Russian Academy, 40

Sacred Literature, 81
Sandy, 74
Saturn’s rings, 59
Scientific Policy Committee,

17
second great unification in

physics, 55
second law of thermodynam-

ics, 85

100



Index

Sheffield Scientific School, 81
Siberia, 77
Sir Francis Spring, 23
Smithsonian Institute, 66
Society of Sciences of Mont-

pellier, 3
solid propellant rocket, 67
Some Properties of Bernoulli

Numbers, 23
South High School, 64
Space Race, 71
spin dynamics, 15
Srinivasa Ramanujan, 18
St. Petersburg, 40
Stalin, 75
statistical equilibrium, 86
statistical mechanics, 84
Steven Weinberg, 12
Subrahmanyam Scholarship,

21
symmetry principles, 17

Tamil Nadu, 18
Technological University of

Karlsruhe, 17
temperature, 81
Théorie des Machines Sim-

ple, 6
The Compendious Book on

Calculations by Com-
pletion and Balanc-
ing, 30

The Enigma of Robert H. God-
dard, 71

The Image of The Earth, 37
Theoria motus corporum soli-

dorum seu rigido-
rum, 41

Theory of Attraction and Re-
pulsion, 7

Theory of the motion of solid
or rigid bodies, 41

thermodynamic state, 83
thermodynamics, 15, 81
thermonuclear processes, 17
Thomas Graham, 52
Timiryazev Agricultural Academy,

74
Tirunarayanan, 19
Town Hall high school, 20
Transactions of the Connecti-

cut Academy of Arts
and Sciences, 81

Treaty of Paris, 4
trigonometric functions, 42
Trinity College, 26
tube-launched rocket, 67
turbulence, 12

uncertainty principle, 13
unified theory of fundamen-

tal basic particles,
17

University of Bruxelles, 17

101



Index

University of Budapest, 17
University of Cambridge, 24
University of Copenhagen,

12
University of Edinburgh, 58
University of Göttingen, 12
University of Madras, 21
University of Marburg, 47
Uranium Club, 15
Uranprojekt, 15
Uranverein, 15

V-2 rocket, 68
V. Ramaswami Iyer, 22
Vector Analysis, 83
vector calculus, 84
vector notation, 83
Venture Into Space – Early

Years of the God-
dard Space Flight Cen-
tre, 70

Virgil’s Aeneid, 45
volume, 81

W. E. Hobson, 24
Waffen-SS, 15
War of the World, 64
Weiss’ theory, 14
Werner Karl Heisenberg, 10
West-Indies, 4
Wiess Field, 14
Wilhelm Wien, 11
William Goddard, 64

Worcester, 63
Worcester Polytechnic Insti-

tute, 65
World War I, 11, 67
World War II, 15, 68, 76
Wurzburg, 48

Yale Divinity School, 81
Yale University, 81

Zurich, 48

102



ISBN 978-1-7751916-1-2


